Skip to main content
Log in

Construction of a ternary WO3/CsPbBr3/ZIF-67 heterostructure for enhanced photocatalytic carbon dioxide reduction

构建三元WO3/CsPbBr3/ZIF-67异质结用于高效光催化CO2还原

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Using halide perovskite nanomaterials for solar-to-fuel conversion has recently attracted a lot of attention due to their excellent photoelectric properties. However, severe photogenerated charge carrier recombinations and poor reaction kinetics greatly restrict their photocatalytic performance. In this study, a ternary WO3/CsPbBr3/ZIF-67 heterostructure was designed for efficient CO2 photoreduction. The results indicate that the Z-scheme charge transfer pathway constructed between WO3 and CsPbBr3 ensures the effective transfer and separation of photogenerated charge carriers. Meanwhile, the subsequent surface modification of zeolitic imidazolate frameworks (ZIF-67) with active Co centers further benefits CO2 adsorption and activation. Accordingly, the synergistic effects of charge separation and CO2 uptake greatly promote the photocatalytic activity. The optimal WO3/CsPbBr3/ZIF-67 heterostructure yields a CO production of 99.38 μmol g−1 in 3 h, which is 6.8 times of that produced by CsPbBr3. This work will inspire new insights in developing efficient photocatalysts for CO2 reduction and even more challenging photocatalytic reactions by elaborately regulating the functional ingredient.

摘要

近年来, 卤素钙钛矿纳米材料以其优异的光电性能在光催化等领域引起了关注. 然而, 光生载流子严重的复合反应和较差的反应动力学也极大地限制了其光催化性能. 本论文设计合成了一种三元WO3/CsPbBr3/ZIF-67异质光催化剂, 并将其应用于有效的CO2光还原反应. 研究表明, WO3与CsPbBr3之间构建的Z型电荷转移路径能够保证光生载流子的有效转移和分离. 此外, 在表面修饰具有活性Co中心的ZIF-67壳层作为助催化剂有利于改善复合材料的CO2的吸附和活化能力. 因此, 电荷分离和CO2吸附性能的增强大大提高了WO3/CsPbBr3/ZIF-67的光催化活性, 还原产物中CO产率达到99.38 μmol g−1, 是单一CsPbBr3的6.8倍. 这项工作有望为开发高效的卤素钙钛矿基光催化剂及其在 CO2还原和其他复杂光催化反应中的应用提供参考.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gong J, Li C, Wasielewski MR. Advances in solar energy conversion. Chem Soc Rev, 2019, 48: 1862–1864

    Article  CAS  Google Scholar 

  2. Zhang B, Sun L. Artificial photosynthesis: opportunities and challenges of molecular catalysts. Chem Soc Rev, 2019, 48: 2216–2264

    Article  CAS  Google Scholar 

  3. Tekalgne MA, Do HH, Hasani A, et al. Two-dimensional materials and metal-organic frameworks for the CO2 reduction reaction. Mater Today Adv, 2020, 5: 100038

    Article  Google Scholar 

  4. Zhang N, Long R, Gao C, et al. Recent progress on advanced design for photoelectrochemical reduction of CO2 to fuels. Sci China Mater, 2018, 61: 771–805

    Article  CAS  Google Scholar 

  5. Wu HL, Li XB, Tung CH, et al. Semiconductor quantum dots: An emerging candidate for CO2 photoreduction. Adv Mater, 2019, 31: 1900709

    Article  CAS  Google Scholar 

  6. Cheng L, Zhang D, Liao Y, et al. Structural engineering of 3D hierarchical Cd0.8Zn0.2S for selective photocatalytic CO2 reduction. Chin J Catal, 2021, 42: 131–140

    Article  CAS  Google Scholar 

  7. Liang J, Chen D, Yao X, et al. Recent progress and development in inorganic halide perovskite quantum dots for photoelectrochemical applications. Small, 2020, 16: 1903398

    Article  CAS  Google Scholar 

  8. Liang S, Zhang M, Biesold GM, et al. Recent advances in synthesis, properties, and applications of metal halide perovskite nanocrystals/polymer nanocomposites. Adv Mater, 2021, 33: 2005888

    Article  CAS  Google Scholar 

  9. Xu YF, Yang MZ, Chen BX, et al. A CsPbBr3 perovskite quantum dot/graphene oxide composite for photocatalytic CO2 reduction. J Am Chem Soc, 2017, 139: 5660–5663

    Article  CAS  Google Scholar 

  10. Huang H, Pradhan B, Hofkens J, et al. Solar-driven metal halide perovskite photocatalysis: Design, stability, and performance. ACS Energy Lett, 2020, 5: 1107–1123

    Article  CAS  Google Scholar 

  11. Bera S, Pradhan N. Perovskite nanocrystal heterostructures: Synthesis, optical properties, and applications. ACS Energy Lett, 2020, 5: 2858–2872

    Article  CAS  Google Scholar 

  12. Ou M, Tu W, Yin S, et al. Amino-assisted anchoring of CsPbBr3 perovskite quantum dots on porous g-C3N4 for enhanced photocatalytic CO2 reduction. Angew Chem Int Ed, 2018, 57: 13570–13574

    Article  CAS  Google Scholar 

  13. Liao JF, Cai YT, Li JY, et al. Plasmonic CsPbBr3—Au nanocomposite for excitation wavelength dependent photocatalytic CO2 reduction. J Energy Chem, 2021, 53: 309–315

    Article  Google Scholar 

  14. Wang J, Wang J, Li N, et al. Direct Z-Scheme 0D/2D heterojunction of CsPbBr3 quantum dots/Bi2WO6 nanosheets for efficient photocatalytic CO2 reduction. ACS Appl Mater Interfaces, 2020, 12: 31477–31485

    Article  CAS  Google Scholar 

  15. Xu F, Meng K, Cheng B, et al. Unique S-scheme heterojunctions in self-assembled TiO2/CsPbBr3 hybrids for CO2 photoreduction. Nat Commun, 2020, 11: 4613

    Article  CAS  Google Scholar 

  16. Mu YF, Zhang C, Zhang MR, et al. Direct Z-Scheme heterojunction of ligand-free FAPbBr3/α-Fe2O3 for boosting photocatalysis of CO2 reduction coupled with water oxidation. ACS Appl Mater Interfaces, 2021, 13: 22314–22322

    Article  CAS  Google Scholar 

  17. Zhang W, Mohamed AR, Ong W. Z-scheme photocatalytic systems for carbon dioxide reduction: Where are we now? Angew Chem Int Ed, 2020, 59: 22894–22915

    Article  CAS  Google Scholar 

  18. Cheng C, He B, Fan J, et al. An inorganic/organic S-scheme heterojunction H2-production photocatalyst and its charge transfer mechanism. Adv Mater, 2021, 33: 2100317

    Article  CAS  Google Scholar 

  19. Mu YF, Zhang W, Dong GX, et al. Ultrathin and small-size graphene oxide as an electron mediator for perovskite-based Z-scheme system to significantly enhance photocatalytic CO2 reduction. Small, 2020, 16: 2002140

    Article  CAS  Google Scholar 

  20. Huang H, Zhao J, Du Y, et al. Direct Z-scheme heterojunction of semicoherent FAPbBr3/Bi2WO6 interface for photoredox reaction with large driving force. ACS Nano, 2020, 14: 16689–16697

    Article  CAS  Google Scholar 

  21. Wang Y, Huang H, Zhang Z, et al. Lead-free perovskite Cs2AgBiBr6@g-C3N4 Z-scheme system for improving CH4 production in photocatalytic CO2 reduction. Appl Catal B-Environ, 2021, 282: 119570

    Article  CAS  Google Scholar 

  22. Jiang Y, Liao JF, Chen HY, et al. All-solid-state Z-scheme α-Fe2O3/amine-RGO/CsPbBr3 hybrids for visible-light-driven photocatalytic CO2 reduction. Chem, 2020, 6: 766–780

    Article  CAS  Google Scholar 

  23. Jiang Y, Chen H, Li J, et al. Z-scheme 2D/2D heterojunction of CsPbBr3/Bi2WO6 for improved photocatalytic CO2 reduction. Adv Funct Mater, 2020, 30: 2004293

    Article  CAS  Google Scholar 

  24. Lei Z, Xue Y, Chen W, et al. MOFs-based heterogeneous catalysts: New opportunities for energy-related CO2 conversion. Adv Energy Mater, 2018, 8: 1801587

    Article  CAS  Google Scholar 

  25. Yin M, Yao Y, Fan H, et al. WO3-SnO2 nanosheet composites: Hydrothermal synthesis and gas sensing mechanism. J Alloys Compd, 2018, 736: 322–331

    Article  CAS  Google Scholar 

  26. Xu Y, Wang X, Liao J, et al. Amorphous-TiO2-encapsulated CsPbBr3 nanocrystal composite photocatalyst with enhanced charge separation and CO2 fixation. Adv Mater Interfaces, 2018, 5: 1801015

    Article  CAS  Google Scholar 

  27. Chen FF, Chen J, Feng YN, et al. Controlling metallic Co0 in ZIF-67-derived N-C/Co composite catalysts for efficient photocatalytic CO2 reduction. Sci China Mater, 2022, 65: 413–421

    Article  CAS  Google Scholar 

  28. Li Q, Guo J, Zhu H, et al. Space-confined synthesis of ZIF-67 nanoparticles in hollow carbon nanospheres for CO2 adsorption. Small, 2019, 15: 1804874

    Article  CAS  Google Scholar 

  29. Park H, Amaranatha Reddy D, Kim Y, et al. Zeolitic imidazolate framework-67 (ZIF-67) rhombic dodecahedrons as full-spectrum light harvesting photocatalyst for environmental remediation. Solid State Sci, 2016, 62: 82–89

    Article  CAS  Google Scholar 

  30. Wang M, Liu J, Guo C, et al. Metal—organic frameworks (ZIF-67) as efficient cocatalysts for photocatalytic reduction of CO2: the role of the morphology effect. J Mater Chem A, 2018, 6: 4768–4775

    Article  CAS  Google Scholar 

  31. Lin R, Wan J, Xiong Y, et al. Quantitative study of charge carrier dynamics in well-defined WO3 nanowires and nanosheets: Insight into the crystal facet effect in photocatalysis. J Am Chem Soc, 2018, 140: 9078–9082

    Article  CAS  Google Scholar 

  32. Kim C, Cho KM, Al-Saggaf A, et al. Z-scheme photocatalytic CO2 conversion on three-dimensional BiVO4/carbon-coated Cu2O nanowire arrays under visible light. ACS Catal, 2018, 8: 4170–4177

    Article  CAS  Google Scholar 

  33. Sun H, Dong C, Liu Q, et al. Conjugated acetylenic polymers grafted cuprous oxide as an efficient Z-scheme heterojunction for photoelectrochemical water reduction. Adv Mater, 2020, 32: 2002486

    Article  CAS  Google Scholar 

  34. Yang MZ, Xu YF, Liao JF, et al. Constructing CsPbBrxI3−x nanocrystal/carbon nanotube composites with improved charge transfer and light harvesting for enhanced photoelectrochemical activity. J Mater Chem A, 2019, 7: 5409–5415

    Article  CAS  Google Scholar 

  35. Wang S, Yao W, Lin J, et al. Cobalt imidazolate metal-organic frameworks photosplit CO2 under mild reaction conditions. Angew Chem Int Ed, 2014, 53: 1034–1038

    Article  CAS  Google Scholar 

  36. Qin J, Wang S, Wang X. Visible-light reduction CO2 with dodecahedral zeolitic imidazolate framework ZIF-67 as an efficient co-catalyst. Appl Catal B-Environ, 2017, 209: 476–482

    Article  CAS  Google Scholar 

  37. Jiang L, Li Y, Wu X, et al. Rich oxygen vacancies mediated bismuth oxysulfide crystals towards photocatalytic CO2-to-CH4 conversion. Sci China Mater, 2021, 64: 2230–2241

    Article  CAS  Google Scholar 

  38. Li B, Sun L, Bian J, et al. Controlled synthesis of novel Z-scheme iron phthalocyanine/porous WO3 nanocomposites as efficient photocatalysts for CO2 reduction. Appl Catal B-Environ, 2020, 270: 118849

    Article  CAS  Google Scholar 

  39. Kong ZC, Liao JF, Dong YJ, et al. Core@shell CsPbBr3@zeolitic imidazolate framework nanocomposite for efficient photocatalytic CO2 reduction. ACS Energy Lett, 2018, 3: 2656–2662

    Article  CAS  Google Scholar 

  40. Kobosko SM, DuBose JT, Kamat PV. Perovskite photocatalysis. Methyl viologen induces unusually long-lived charge carrier separation in CsPbBr3 nanocrystals. ACS Energy Lett, 2020, 5: 221–223

    Article  CAS  Google Scholar 

  41. Grigioni I, Abdellah M, Corti A, et al. Photoinduced charge-transfer dynamics in WO3/BiVO4 photoanodes probed through midinfrared transient absorption spectroscopy. J Am Chem Soc, 2018, 140: 14042–14045

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (21890382), the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program (2017BT01C161), Guangdong Basic and Applied Basic Research Foundation (2020A1515110937), and the Fundamental Research Funds for the Central Universities (19lgzd24 and 20lgpy80).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Chen HY and Su CY conceived the idea of this work and revised the manuscript; Dong YJ conducted the experiments and data analysis and wrote the manuscript; Jiang Y helped with the ESR measurement and mechanism analysis; Liao JF contributed to the TAS measurement and revised the manuscript; Kuang DB revised the manuscript and provided useful advice. All authors contributed to the general discussion.

Corresponding authors

Correspondence to Hong-Yan Chen  (陈洪燕) or Cheng-Yong Su  (苏成勇).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Supplementary information Supporting data are available in the online version of the paper.

Yu-Jie Dong received her B.S. degree from Zhengzhou University in 2014 and received her Ph.D. degree from Sun Yat-sen University (SYSU) in 2019. She is now working as a postdoctoral research fellow with Professor Cheng-Yong Su at SYSU. Her current research interests focus on photocatalysis and photoelectrochemical applications.

Hong-Yan Chen is an associate professor at SYSU. She received her bachelor’s degree in 2005 from the Northeast Normal University and her Ph.D. degree in physical chemistry from the Institute of Chemistry, Chinese Academy of Sciences, in 2010. Her current research interest lies in functional nanocomposites, metal halide perovskites, photocatalysts and photoelectrochemical cells.

Cheng-Yong Su is a Professor at SYSU. He obtained his Ph.D. degree from Lanzhou University (1996), joined Prof. Wolfgang Kaim’s group at Stuttgart University (2001) as an Alexander von Humboldt Research Fellow, continued postdoctoral work with Prof. Hans-Conrad zur Loye at South Carolina University (2002), and has been working as a professor at SYSU since 2004. His research interest includes supramolecular coordination chemistry, metal-organic materials, and catalysis and nanoscience relevant to clean energy.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, YJ., Jiang, Y., Liao, JF. et al. Construction of a ternary WO3/CsPbBr3/ZIF-67 heterostructure for enhanced photocatalytic carbon dioxide reduction. Sci. China Mater. 65, 1550–1559 (2022). https://doi.org/10.1007/s40843-021-1962-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-021-1962-9

Keywords

Navigation