Skip to main content
Log in

Synergistic interaction and chemically bonded association between ZIF-8 and C-doped g-C3N4 for enhancement of visible light photocatalytic H2O2 production

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

g-C3N4 has recently emerged as a promising visible light-driven non-metal, and sustainable-based photocatalyst for various photocatalytic reactions. Nevertheless, intrinsic limitations such as insufficient light-harvesting ability, minimal surface area, and the sluggish photogenerated charge efficiency of the bulk g-C3N4 photocatalyst have hampered its photocatalytic performance, especially in the production of H2O2. Herein, the association between zeolitic imidazolate frameworks (ZIF-8) and carbon-doped g-C3N4 (CCN)-derived from kapok fiber, as a chemically bonded nanocomposite photocatalyst (ZIF-8/CCN), was successfully constructed via a facile hydrothermal technique. XRD, FTIR, and XPS analyses revealed that ZIF-8 and CCN were chemically bonded via π–π stacking and hydrogen bond interactions. The in-situ carbon doping and microtubular structure of CCN derived from kapok fiber have significantly improved the chemically bonded nanocomposite photocatalyst’s charge separation and photon absorption abilities. The designated chemically bonded ZIF-8/CCN nanocomposite photocatalyst exhibits outstanding photocatalytic H2O2 production due to the synergistic effect of carbon dopant, unique morphology, together with a large surface area, and chemically mediated excellent charge separation of ZIF-8/CCN. The findings of this study will offer a more efficient nanoarchitecture for g-C3N4 photocatalysts based on morphology modulation, in-situ carbon doping, and metal-organic frameworks (MOFs) association for solar fuel production.

Graphical Abstract

Highlights

  • Excellent light harvesting and efficient charge separation by in-situ C doping.

  • Chemically-bonded ZIF-8/CCN photocatalyst for efficient charge transfer.

  • Enhanced H2O2 generation via a nanocomposite of the high surface area of ZIF-8 and C-doping in CCN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ding Y, Maitra S, Halder S et al. (2022) Emerging semiconductors and metal-organic-compounds-related photocatalysts for sustainable hydrogen peroxide production. Matter 5:2119–2167. https://doi.org/10.1016/j.matt.2022.05.011

    Article  CAS  Google Scholar 

  2. Fuku K, Takioka R, Iwamura K et al. (2020) Photocatalytic H2O2 production from O2 under visible light irradiation over phosphate ion-coated Pd nanoparticles-supported BiVO4. Appl Catal B Environ 272:119003. https://doi.org/10.1016/j.apcatb.2020.119003

    Article  CAS  Google Scholar 

  3. Mase K, Yoneda M, Yamada Y, Fukuzumi S (2016) Seawater usable for production and consumption of hydrogen peroxide as a solar fuel. Nat Commun 7:1–7. https://doi.org/10.1038/ncomms11470

    Article  CAS  Google Scholar 

  4. Liu T, Pan Z, Vequizo JJM et al. (2022) Overall photosynthesis of H2O2 by an inorganic semiconductor. Nat Commun 13:1–8. https://doi.org/10.1038/s41467-022-28686-x

    Article  ADS  CAS  Google Scholar 

  5. Fukuzumi S, Yamada Y (2016) Hydrogen peroxide used as a solar fuel in one-compartment fuel cells. ChemElectroChem 3:1978–1989. https://doi.org/10.1002/celc.201600317

    Article  CAS  Google Scholar 

  6. Disselkamp RS (2008) Energy storage using aqueous hydrogen peroxide. Energy Fuels 22:2771–2774. https://doi.org/10.1021/ef800050t

    Article  CAS  Google Scholar 

  7. Nishimi T, Kamachi T, Kato K, et al (2011) Mechanistic study on the production of hydrogen peroxide in the anthraquinone process. Eur J Org Chem 4113–4120. https://doi.org/10.1002/ejoc.201100300

  8. Jiang C, Fei YF, Xu W, et al (2023) Synergistic effects of Bi2O3 and Ta2O5 for efficient electrochemical production of H2O2. Appl Catal B Environ 334: https://doi.org/10.1016/j.apcatb.2023.122867

  9. Ding Y, Maitra S, Wang C et al. (2022) Hydrophilic bi-functional B-doped g-C3N4 hierarchical architecture for excellent photocatalytic H2O2 production and photoelectrochemical water splitting. J Energy Chem 70:236–247. https://doi.org/10.1016/j.jechem.2022.02.031

    Article  CAS  Google Scholar 

  10. Liang X, Mi Z, Wang Y et al. (2004) An integrated process of H2O2 production through isopropanol oxidation and cyclohexanone ammoximation. Chem Eng Technol 27:176–180. https://doi.org/10.1002/ceat.200401862

    Article  CAS  Google Scholar 

  11. Peng Y, Wang L, Liu Y et al. (2017) Visible-light-driven photocatalytic H2O2 production on g-C3N4 loaded with CoP as a noble metal free cocatalyst. Eur J Inorg Chem 2017:4797–4802. https://doi.org/10.1002/ejic.201700930

    Article  CAS  Google Scholar 

  12. Zhang X, Zhao X, Zhu P et al. (2022) Electrochemical oxygen reduction to hydrogen peroxide at practical rates in strong acidic media. Nat Commun 13:1–11. https://doi.org/10.1038/s41467-022-30337-0

    Article  ADS  CAS  Google Scholar 

  13. Zeng X, Liu Y, Kang Y et al. (2020) Simultaneously tuning charge separation and oxygen reduction pathway on graphitic carbon nitride by polyethylenimine for boosted photocatalytic hydrogen peroxide production. ACS Catal 10:3697–3706. https://doi.org/10.1021/acscatal.9b05247

    Article  CAS  Google Scholar 

  14. Yang H-D, Huang J-H, Shibata K et al. (2020) Boosting photocatalytic H2O2 production by coupling of sulfuric acid and 5-sulfosalicylic acid incorporated polyaniline with g-C3N4. Sustain Energy Fuels 4:4186–4195. https://doi.org/10.1039/D0SE00337A

    Article  CAS  Google Scholar 

  15. Aratani Y, Suenobu T, Ohkubo K et al. (2017) Dual function photocatalysis of cyano-bridged heteronuclear metal complexes for water oxidation and two-electron reduction of dioxygen to produce hydrogen peroxide as a solar fuel. Chem Commun 53:3473–3476. https://doi.org/10.1039/C7CC00621G

    Article  CAS  Google Scholar 

  16. Zhang Z, Zheng Y, Xie H et al. (2022) Synthesis of g-C3N4 microrods with superficial C, N dual vacancies for enhanced photocatalytic organic pollutant removal and H2O2 production. J Alloys Compd 904:164028. https://doi.org/10.1016/j.jallcom.2022.164028

    Article  CAS  Google Scholar 

  17. Baran T, Wojtyła S, Minguzzi A et al. (2019) Achieving efficient H2O2 production by a visible-light absorbing, highly stable photosensitized TiO2. Appl Catal B Environ 244:303–312. https://doi.org/10.1016/j.apcatb.2018.11.044

    Article  CAS  Google Scholar 

  18. Nordin NA, Mohamed MA, Salehmin MNI, Mohd Yusoff SF (2022) Photocatalytic active metal–organic framework and its derivatives for solar-driven environmental remediation and renewable energy. Coord Chem Rev 468:214639. https://doi.org/10.1016/j.ccr.2022.214639

    Article  CAS  Google Scholar 

  19. Fattahimoghaddam H, Mahvelati-Shamsabadi T, Lee B-K (2021) Enhancement in photocatalytic H2O2 production over g-C3N4 nanostructures: a collaborative approach of nitrogen deficiency and supramolecular precursors. ACS Sustain Chem Eng 9:4520–4530. https://doi.org/10.1021/acssuschemeng.0c08884

    Article  CAS  Google Scholar 

  20. Song H, Wei L, Chen L et al. (2020) Photocatalytic production of hydrogen peroxide over modified semiconductor materials: a minireview. Top Catal 63:895–912. https://doi.org/10.1007/s11244-020-01317-9

    Article  CAS  Google Scholar 

  21. Fuku K, Miyase Y, Miseki Y et al. (2017) Photoelectrochemical hydrogen peroxide production from water on a WO3/BiVO4 photoanode and from O2 on an Au cathode without external bias. Chem—An Asian J 12:1111–1119. https://doi.org/10.1002/asia.201700292

    Article  CAS  Google Scholar 

  22. Nadar A, Gupta SS, Kar Y et al. (2020) Evaluating the reactivity of BiVO4 surfaces for efficient electrocatalytic H2O2 production: a combined experimental and computational study. J Phys Chem C 124:4152–4161. https://doi.org/10.1021/acs.jpcc.9b11418

    Article  CAS  Google Scholar 

  23. Lei J, Chen B, Lv W et al. (2019) Robust photocatalytic H2O2 production over inverse opal g-C3N4 with carbon vacancy under visible light. ACS Sustain Chem Eng 7:16467–16473. https://doi.org/10.1021/acssuschemeng.9b03678

    Article  CAS  Google Scholar 

  24. Li S, Dong G, Hailili R et al. (2016) Effective photocatalytic H2O2 production under visible light irradiation at g-C3N4 modulated by carbon vacancies. Appl Catal B Environ 190:26–35. https://doi.org/10.1016/j.apcatb.2016.03.004

    Article  CAS  Google Scholar 

  25. Atikah Nordin N, Azuwa Mohamed M, Sufri Mastuli M et al. (2024) Revealing the impact of different precursors and solvents for supramolecular complex formation and in-situ C-doping in g-C3N4 with enhanced photocatalytic H2O2 production. J Ind Eng Chem 3:7375–7381. https://doi.org/10.1016/j.jiec.2024.01.032

    Article  CAS  Google Scholar 

  26. Geng X, Wang L, Zhang L et al. (2021) H2O2 production and in situ sterilization over a ZnO/g-C3N4 heterojunction photocatalyst. Chem Eng J 420:129722. https://doi.org/10.1016/j.cej.2021.129722

    Article  CAS  Google Scholar 

  27. Wang J, Li M, Zhou S et al. (2017) Graphitic carbon nitride nanosheets embedded in poly(vinyl alcohol) nanocomposite membranes for ethanol dehydration via pervaporation. Sep Purif Technol 188:24–37. https://doi.org/10.1016/j.seppur.2017.07.008

    Article  CAS  Google Scholar 

  28. Jiang L, Yang J, Zhou S et al. (2021) Strategies to extend near-infrared light harvest of polymer carbon nitride photocatalysts. Coord Chem Rev 439:213947. https://doi.org/10.1016/j.ccr.2021.213947

    Article  CAS  Google Scholar 

  29. Mohamed MA, M. Zain MF, Jeffery Minggu L et al. (2018) Constructing bio-templated 3D porous microtubular C-doped g-C3N4 with tunable band structure and enhanced charge carrier separation. Appl Catal B Environ 236:265–279. https://doi.org/10.1016/j.apcatb.2018.05.037

    Article  CAS  Google Scholar 

  30. Fattahimoghaddam H, Mahvelati-Shamsabadi T, Lee BK (2021) Efficient photodegradation of rhodamine B and tetracycline over robust and green g-C3N4 nanostructures: supramolecular design. J Hazard Mater 403:123703. https://doi.org/10.1016/j.jhazmat.2020.123703

    Article  PubMed  CAS  Google Scholar 

  31. Niu H, Zhao W, Lv H et al. (2021) Accurate design of hollow/tubular porous g-C3N4 from melamine-cyanuric acid supramolecular prepared with mechanochemical method. Chem Eng J 411:128400. https://doi.org/10.1016/j.cej.2020.128400

    Article  CAS  Google Scholar 

  32. Shan QY, Guan B, Zhu SJ et al. (2016) Facile synthesis of carbon-doped graphitic C3N4@MnO2 with enhanced electrochemical performance. RSC Adv 6:83209–83216. https://doi.org/10.1039/c6ra18265h

    Article  ADS  CAS  Google Scholar 

  33. Wu X, Liu C, Li X et al. (2015) Effect of morphology on the photocatalytic activity of g-C3N4 photocatalysts under visible-light irradiation. Mater Sci Semicond Process 32:76–81. https://doi.org/10.1016/j.mssp.2014.11.047

    Article  CAS  Google Scholar 

  34. Su S, Xing Z, Zhang S et al. (2021) Ultrathin mesoporous g-C3N4/NH2-MIL-101(Fe) octahedron heterojunctions as efficient photo-Fenton-like system for enhanced photo-thermal effect and promoted visible-light-driven photocatalytic performance. Appl Surf Sci 537:147890. https://doi.org/10.1016/j.apsusc.2020.147890

    Article  CAS  Google Scholar 

  35. Khan I, Wang C, Khan S et al. (2023) Bio-capped and green synthesis of ZnO/g-C3N4 nanocomposites and its improved antibiotic and photocatalytic activities: an exceptional approach towards environmental remediation. Chin J Chem Eng 56:215–224. https://doi.org/10.1016/j.cjche.2022.07.031

    Article  CAS  Google Scholar 

  36. Zaman S, Khan I, Zhang FM et al. (2023) Synthesis of mediator-free hollow BiFeO3 spheres/porous g-C3N4 Z-scheme photocatalysts for CO2 conversion and Alizarin Red S degradation. Mater Sci Semicond Process 162:107534. https://doi.org/10.1016/j.mssp.2023.107534

    Article  CAS  Google Scholar 

  37. Khan I, Kang K, Khan A et al. (2023) Efficient CO2 conversion and organic pollutants degradation over Sm3+ doped and rutile TiO2 nanorods decorated-GdFeO3 nanorods. Int J Hydrogen Energy 48:32756–32770. https://doi.org/10.1016/j.ijhydene.2023.05.079

    Article  CAS  Google Scholar 

  38. Chen Y, Zhai B, Liang Y et al. (2019) Preparation of CdS/g-C3N4/MOF composite with enhanced visible-light photocatalytic activity for dye degradation. J Solid State Chem 274:32–39. https://doi.org/10.1016/j.jssc.2019.01.038

    Article  ADS  CAS  Google Scholar 

  39. Bedia J, Muelas-Ramos V, Peñas-Garzón M et al. (2019) A review on the synthesis and characterization of metal organic frameworks for photocatalytic water purification. Catalysts 9:52. https://doi.org/10.3390/catal9010052

    Article  CAS  Google Scholar 

  40. Bao N, Hu X, Zhang Q et al. (2017) Synthesis of porous carbon-doped g-C3N4 nanosheets with enhanced visible-light photocatalytic activity. Appl Surf Sci 403:682–690. https://doi.org/10.1016/j.apsusc.2017.01.256

    Article  ADS  CAS  Google Scholar 

  41. Mohamed MA, M. Zain MF, Minggu LJ et al. (2019) Enhancement of visible light photocatalytic hydrogen evolution by bio-mimetic C-doped graphitic carbon nitride. Int J Hydrogen Energy 44:13098–13105. https://doi.org/10.1016/j.ijhydene.2019.02.243

    Article  CAS  Google Scholar 

  42. Panneri S, Ganguly P, Mohan M et al. (2017) Photoregenerable, bifunctional granules of carbon-doped g-C3N4 as adsorptive photocatalyst for the efficient removal of tetracycline antibiotic. ACS Sustain Chem Eng 5:1610–1618. https://doi.org/10.1021/acssuschemeng.6b02383

    Article  CAS  Google Scholar 

  43. Guan K, Li J, Lei W et al. (2021) Synthesis of sulfur-doped g-C3N4 with enhanced photocatalytic activity in molten salt. J Mater 7:1131–1142. https://doi.org/10.1016/j.jmat.2021.01.008

    Article  Google Scholar 

  44. Zhu Z, Liu Z, Tang X et al. (2021) Sulfur-doped g-C3N4 for efficient photocatalytic CO2 reduction: insights by experiment and first-principles calculations. Catal Sci Technol 11:1725–1736. https://doi.org/10.1039/d0cy02382e

    Article  CAS  Google Scholar 

  45. Wang Y, Tian Y, Yan L, Su Z (2018) DFT study on sulfur-doped g-C3N4 nanosheets as a photocatalyst for CO2 reduction reaction. J Phys Chem C 122:7712–7719. https://doi.org/10.1021/acs.jpcc.8b00098

    Article  CAS  Google Scholar 

  46. Molaei M, Mousavi-Khoshdel SM, Ghiasi M (2019) Exploring the effect of phosphorus doping on the utility of g-C3N4 as an electrode material in Na-ion batteries using DFT method. J Mol Model 25:1–8. https://doi.org/10.1007/s00894-019-4109-1

    Article  CAS  Google Scholar 

  47. Zhu YP, Ren TZ, Yuan ZY (2015) Mesoporous phosphorus-doped g-C3N4 nanostructured flowers with superior photocatalytic hydrogen evolution performance. ACS Appl Mater Interfaces 7:16850–16856. https://doi.org/10.1021/acsami.5b04947

    Article  PubMed  CAS  Google Scholar 

  48. Huang X, Gu W, Hu S et al. (2020) Phosphorus-doped inverse opal g-C3N4 for efficient and selective CO generation from photocatalytic reduction of CO2. Catal Sci Technol 10:3694–3700. https://doi.org/10.1039/d0cy00457j

    Article  CAS  Google Scholar 

  49. Khan I, Luo M, Khan S et al. (2022) Green synthesis of SrO bridged LaFeO3/g-C3N4 nanocomposites for CO2 conversion and bisphenol A degradation with new insights into mechanism. Environ Res 207:112650. https://doi.org/10.1016/j.envres.2021.112650

    Article  PubMed  CAS  Google Scholar 

  50. Gong Y, Zhao X, Zhang H et al. (2018) MOF-derived nitrogen-doped carbon modified g-C3N4 heterostructure composite with enhanced photocatalytic activity for bisphenol A degradation with peroxymonosulfate under visible light irradiation. Appl Catal B Environ 233:35–45. https://doi.org/10.1016/j.apcatb.2018.03.077

    Article  CAS  Google Scholar 

  51. Yuan X, Qu S, Huang X, et al (2021) Design of core-shelled g-C3N4@ZIF-8 photocatalyst with enhanced tetracycline adsorption for boosting photocatalytic degradation. Chem Eng J 416:. https://doi.org/10.1016/j.cej.2021.129148

  52. Zhang X, Chen A, Zhong M et al. (2019) Metal–organic frameworks (MOFs) and MOF-derived materials for energy storage and conversion. Springer, Singapore

    Book  Google Scholar 

  53. Pan L, Muhammad T, Ma L et al. (2016) MOF-derived C-doped ZnO prepared via a two-step calcination for efficient photocatalysis. Appl Catal B Environ 189:181–191. https://doi.org/10.1016/j.apcatb.2016.02.066

    Article  CAS  Google Scholar 

  54. Eddaoudi M, Kim J, Rosi N et al. (2002) Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295:469–472. https://doi.org/10.1126/science.1067208

    Article  ADS  PubMed  CAS  Google Scholar 

  55. Salari H, Sadeghinia M (2019) MOF-templated synthesis of nano Ag2O/ZnO/CuO heterostructure for photocatalysis. J Photochem Photobiol A Chem 376:279–287. https://doi.org/10.1016/j.jphotochem.2019.03.010

    Article  CAS  Google Scholar 

  56. He X, Gan Z, Fisenko S et al. (2017) Rapid formation of metal-organic frameworks (MOFs) based nanocomposites in microdroplets and their applications for CO2 photoreduction. ACS Appl Mater Interfaces 9:9688–9698. https://doi.org/10.1021/acsami.6b16817

    Article  PubMed  CAS  Google Scholar 

  57. Lu J, Cheng L, Li J, Liu H (2020) MOF-derived strategy for monodisperse Cd0.5Zn0.5S nanospheres with enhanced photocatalytic activity for hydrogen evolution. J Alloys Compd 849:156669. https://doi.org/10.1016/j.jallcom.2020.156669

    Article  CAS  Google Scholar 

  58. Butova VV, Budnyk AP, Bulanova EA et al. (2017) Hydrothermal synthesis of high surface area ZIF-8 with minimal use of TEA. Solid State Sci 69:13–21. https://doi.org/10.1016/j.solidstatesciences.2017.05.002

    Article  ADS  CAS  Google Scholar 

  59. Munn AS, Dunne PW, Tang SVY, Lester EH (2015) Large-scale continuous hydrothermal production and activation of ZIF-8. Chem Commun 51:12811–12814. https://doi.org/10.1039/c5cc04636j

    Article  CAS  Google Scholar 

  60. Pan Y, Liu Y, Zeng G et al. (2011) Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system. Chem Commun 47:2071–2073

    Article  CAS  Google Scholar 

  61. Liu X, Zhang J, Dong Y et al. (2018) A facile approach for the synthesis of Z-scheme photocatalyst ZIF-8/g-C3N4 with highly enhanced photocatalytic activity under simulated sunlight. New J Chem 42:12180–12187. https://doi.org/10.1039/c8nj01782d

    Article  CAS  Google Scholar 

  62. Li D, Liu H, Niu C et al. (2019) Mpg-C3N4-ZIF-8 composites for the degradation of tetracycline hydrochloride using visible light. Water Sci Technol 80:2206–2217. https://doi.org/10.2166/wst.2020.038

    Article  PubMed  CAS  Google Scholar 

  63. Eisenberg GM (1943) Colorimetric determination of hydrogen peroxide. Ind Eng Chem—Anal Ed 15:327–328. https://doi.org/10.1021/i560117a011

    Article  CAS  Google Scholar 

  64. Bao C, Zeng Q, Li F et al. (2022) Effect of boron doping on the interlayer spacing of graphite. Materials 15:4203. https://doi.org/10.3390/ma15124203

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  65. Xiao M, Li N, Ma Z et al. (2017) The effect of doping graphene oxide on the structure and property of polyimide-based graphite fibre. RSC Adv 7:56602–56610. https://doi.org/10.1039/C7RA10307G

    Article  ADS  CAS  Google Scholar 

  66. Xing W, Cheng K, Zhang Y et al. (2021) Incorporation of nonmetal group dopants into g-C3N4 framework for highly improved photocatalytic H2 production. Nanomaterials 11:1480. https://doi.org/10.3390/nano11061480

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  67. Nguyen TD, Nguyen VH, Le Hoang Pham A et al. (2022) Fabrication of binary g-C3N4/UU-200 composites with enhanced visible-light-driven photocatalytic performance toward organic pollutant eliminations. RSC Adv 12:25377–25387. https://doi.org/10.1039/d2ra04222c

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  68. Tran Huu H, Thi MDN, Nguyen VP et al. (2021) One-pot synthesis of S-scheme MoS2/g-C3N4 heterojunction as effective visible light photocatalyst. Sci Rep 11:1–12. https://doi.org/10.1038/s41598-021-94129-0

    Article  CAS  Google Scholar 

  69. Mohamed MA, M. Zain MF, Jeffery Minggu L et al. (2019) Revealing the role of kapok fibre as bio-template for In-situ construction of C-doped g-C 3 N 4 @C, N co-doped TiO 2 core-shell heterojunction photocatalyst and its photocatalytic hydrogen production performance. Appl Surf Sci 476:205–220. https://doi.org/10.1016/j.apsusc.2019.01.080

    Article  ADS  CAS  Google Scholar 

  70. Tang R, Gong D, Deng Y et al. (2022) π-π stacking derived from graphene-like biochar/g-C3N4 with tunable band structure for photocatalytic antibiotics degradation via peroxymonosulfate activation. J Hazard Mater 423:126944. https://doi.org/10.1016/j.jhazmat.2021.126944

    Article  PubMed  CAS  Google Scholar 

  71. Mohamed MA, M. Zain MF, Jeffery Minggu L et al. (2019) Bio-inspired hierarchical hetero-architectures of in-situ C-doped g-C3N4 grafted on C, N co-doped ZnO micro-flowers with booming solar photocatalytic activity. J Ind Eng Chem 77:393–407. https://doi.org/10.1016/j.jiec.2019.05.003

    Article  CAS  Google Scholar 

  72. Nordin NAHM, Ismail AF, Misdan N, Nazri NAM (2017) Modified ZIF-8 mixed matrix membrane for CO2/CH4 separation. In: AIP Conf Proc

  73. Zhang Y, Jia Y, Hou L (2018) Synthesis of zeolitic imidazolate framework-8 on polyester fiber for PM 2.5 removal. RSC Adv 8:31471–31477. https://doi.org/10.1039/C8RA06414H

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  74. Qiu M, Liu Z, Wang S, Hu B (2021) The photocatalytic reduction of U(VI) into U(IV) by ZIF-8/g-C3N4 composites at visible light. Environ Res 196:110349. https://doi.org/10.1016/j.envres.2020.110349

    Article  PubMed  CAS  Google Scholar 

  75. Zhao Y, Liu Y, Cao J, et al (2020) Efficient production of H2O2 via two-channel pathway over ZIF-8/C3N4 composite photocatalyst without any sacrificial agent. Appl Catal B Environ 278. https://doi.org/10.1016/j.apcatb.2020.119289

  76. Li Y, Fu Y, Ni B et al. (2018) Effects of ligand functionalization on the photocatalytic properties of titanium-based MOF: a density functional theory study. AIP Adv 8:035012. https://doi.org/10.1063/1.5021098

    Article  ADS  CAS  Google Scholar 

  77. Riyadh Atta M, Shima Shaharun M, Maksudur Rahman Khan M et al. (2023) Enhancing the photo-electrocatalytic properties of g-C3N4 by boron doping and ZIF-8 hybridization. Inorg Chem Commun 148:110235. https://doi.org/10.1016/j.inoche.2022.110235

    Article  CAS  Google Scholar 

  78. Zhang S, Guo H, Li Q et al. (2018) Hydrogen-bond-linked photocatalyst of g-C3N4/3, 4, 9, 10-perylenetetracarboxylic acid anhydride with different bay-substitutents. Catal Commun 111:90–94. https://doi.org/10.1016/j.catcom.2018.04.009

    Article  CAS  Google Scholar 

  79. Hu S, Li F, Fan Z et al. (2014) Band gap-tunable potassium doped graphitic carbon nitride with enhanced mineralization ability. Dalt Trans 44:1084–1092. https://doi.org/10.1039/c4dt02658f

    Article  Google Scholar 

  80. Cao J, Fan H, Wang C et al. (2020) Facile synthesis of carbon self-doped g-C3N4 for enhanced photocatalytic hydrogen evolution. Ceram Int 46:7888–7895. https://doi.org/10.1016/j.ceramint.2019.12.008

    Article  CAS  Google Scholar 

  81. Hu C, Huang Y-C, Chang A-L, Nomura M (2019) Amine functionalized ZIF-8 as a visible-light-driven photocatalyst for Cr(VI) reduction. J Colloid Interface Sci 553:372–381. https://doi.org/10.1016/j.jcis.2019.06.040

    Article  ADS  PubMed  CAS  Google Scholar 

  82. Tian L, Yang X, Liu Q et al. (2018) Anchoring metal-organic framework nanoparticles on graphitic carbon nitrides for solar-driven photocatalytic hydrogen evolution. Appl Surf Sci 455:403–409. https://doi.org/10.1016/j.apsusc.2018.06.014

    Article  ADS  CAS  Google Scholar 

  83. Liu S, Chen F, Li S et al. (2017) Enhanced photocatalytic conversion of greenhouse gas CO2 into solar fuels over g-C3N4 nanotubes with decorated transparent ZIF-8 nanoclusters. Appl Catal B Environ 211:1–10. https://doi.org/10.1016/j.apcatb.2017.04.009

    Article  CAS  Google Scholar 

  84. Lafta MA, Ammar SH (2023) Synthesis and photocatalytic activity of polyoxometalates immobilized onto g-C3N4/ZIF-67 heterostructures. Mater Sci Semicond Process 153:107131. https://doi.org/10.1016/j.mssp.2022.107131

    Article  CAS  Google Scholar 

  85. Tang H, Li W, Jiang H, et al (2019) ZIF-8-derived hollow carbon for efficient adsorption of antibiotics. Nanomaterials 9. https://doi.org/10.3390/nano9010117

  86. Zeeshan M, Keskin S, Uzun A (2018) Enhancing CO2/CH4 and CO2/N2 separation performances of ZIF-8 by post-synthesis modification with [BMIM][SCN]. Polyhedron 155:485–492. https://doi.org/10.1016/j.poly.2018.08.073

    Article  CAS  Google Scholar 

  87. Wang T, Wang Y, Sun M et al. (2020) Thermally treated zeolitic imidazolate framework-8 (ZIF-8) for visible light photocatalytic degradation of gaseous formaldehyde. Chem Sci 11:6670–6681. https://doi.org/10.1039/D0SC01397H

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Panneri S, Thomas M, Ganguly P et al. (2017) C3N4 anchored ZIF 8 composites: photo-regenerable, high capacity sorbents as adsorptive photocatalysts for the effective removal of tetracycline from water. Catal Sci Technol 7:2118–2128. https://doi.org/10.1039/c7cy00348j

    Article  CAS  Google Scholar 

  89. Liu D, Lipponen K, Quan P et al. (2018) Impact of pore size and surface chemistry of porous silicon particles and structure of phospholipids on their interactions. ACS Biomater Sci Eng 4:2308–2313. https://doi.org/10.1021/acsbiomaterials.8b00343

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Li D, Song S, Zuo D, Wu W (2020) Effect of pore defects on mechanical properties of graphene-reinforced aluminum nanocomposites. Metal 10:1–9. https://doi.org/10.3390/met10040468

    Article  Google Scholar 

  91. James JB, Lin YS (2016) Kinetics of ZIF-8 thermal decomposition in inert, oxidizing, and reducing environments. J Phys Chem C 120:14015–14026. https://doi.org/10.1021/acs.jpcc.6b01208

    Article  CAS  Google Scholar 

  92. Wu CS, Xiong ZH, Li C, Zhang JM (2015) Zeolitic imidazolate metal-organic framework ZIF-8 with ultra-high adsorption capacity bound tetracycline in aqueous solution. RSC Adv 5:82127–82137. https://doi.org/10.1039/c5ra15497a

    Article  ADS  CAS  Google Scholar 

  93. Wang S, Cui J, Zhang S et al. (2020) Enhancement thermal stability and CO2 adsorption property of ZIF-8 by pre-modification with polyaniline. Mater Res Express 7:025304. https://doi.org/10.1088/2053-1591/ab6db3

    Article  ADS  CAS  Google Scholar 

  94. Amini A, Karimi M, Rabbani M, Safarifard V (2022) Cobalt-doped g-C3N4/MOF heterojunction composite with tunable band structures for photocatalysis aerobic oxidation of benzyl alcohol. Polyhedron 216:115728. https://doi.org/10.1016/j.poly.2022.115728

    Article  CAS  Google Scholar 

  95. Karthik P, Vinoth R, Zhang P et al. (2018) π-π interaction between metal-organic framework and reduced graphene oxide for visible-light photocatalytic H2 production. ACS Appl Energy Mater 1:1913–1923. https://doi.org/10.1021/acsaem.7b00245

    Article  CAS  Google Scholar 

  96. Wu S, Quan X (2022) Design principles and strategies of photocatalytic H2O2 production from O2 reduction. ACS EST Eng 2:1068–1079. https://doi.org/10.1021/acsestengg.1c00456

    Article  CAS  Google Scholar 

  97. Fu Y, Sun D, Chen Y et al. (2012) An amine-functionalized titanium metal-organic framework photocatalyst with visible-light-induced activity for CO2 reduction. Angew Chemie - Int Ed 51:3364–3367. https://doi.org/10.1002/anie.201108357

    Article  CAS  Google Scholar 

  98. Hasnan NSN, Mohamed MA, Nordin NA et al. (2023) Microtubular cellulose-derived kapok fibre as a solid electron donor for boosting photocatalytic H2O2 production over C-doped g-C3N4 hybrid complexation. Carbohydr Polym 317:121096. https://doi.org/10.1016/j.carbpol.2023.121096

    Article  PubMed  CAS  Google Scholar 

  99. Gu M, Yang Y, Zhang L et al. (2023) Efficient sacrificial-agent-free solar H2O2 production over all-inorganic S-scheme composites. Appl Catal B Environ 324:122227. https://doi.org/10.1016/j.apcatb.2022.122227

    Article  CAS  Google Scholar 

  100. Peng L, Li ZW, Zheng RR et al. (2019) Preparation and characterization of mesoporous g-C3N4/SiO2 material with enhanced photocatalytic activity. J Mater Res 34:1785–1794. https://doi.org/10.1557/jmr.2019.113

    Article  ADS  CAS  Google Scholar 

  101. Fu S, He Y, Wu Q et al. (2016) Visible-light responsive plasmonic Ag2O/Ag/g-C3N4 nanosheets with enhanced photocatalytic degradation of rhodamine B. J Mater Res 31:2252–2260. https://doi.org/10.1557/jmr.2016.234

    Article  ADS  CAS  Google Scholar 

  102. Sarma B, Deb SK, Sarma BK (2016) Photoluminescence and photocatalytic activities of Ag/ZnO metal semiconductor heterostructure. J Phy Conf Ser 765:012023. https://doi.org/10.1088/1742-6596/765/1/012023

    Article  CAS  Google Scholar 

  103. Su G, Feng T, Huang Z et al. (2022) MOF-derived hollow CuO/ZnO nanocages for the efficient and rapid degradation of fluoroquinolones under natural sunlight. Chem Eng J 436:135119. https://doi.org/10.1016/j.cej.2022.135119

    Article  CAS  Google Scholar 

  104. Tong Z, Yang D, Sun Y, et al (2016) Tubular g-C3N4 isotype heterojunction: enhanced visible-light photocatalytic activity through cooperative manipulation of oriented electron and hole transfer. Small 4093–4101. https://doi.org/10.1002/smll.201601660

  105. He J, Ye J, Zhang Y et al. (2020) Synergistic RGO/black TiO2/2D-ZIF-8 ternary heterogeneous composite with highly efficient photocatalytic activity. ChemistrySelect 5:3746–3755. https://doi.org/10.1002/slct.201904939

    Article  CAS  Google Scholar 

  106. Gu W, Hu L, Li J, Wang E (2016) Hybrid of g-C3N4 assisted metal-organic frameworks and their derived high-efficiency oxygen reduction electrocatalyst in the whole pH range. ACS Appl Mater Interfaces 8:35281–35288. https://doi.org/10.1021/acsami.6b12031

    Article  PubMed  CAS  Google Scholar 

  107. Zhe-qin C, Xiao-cong Z, Yong-min X et al. (2021) A high-performance nitrogen-rich ZIF-8-derived Fe-NC electrocatalyst for the oxygen reduction reaction. J Alloys Compd 884:160980. https://doi.org/10.1016/j.jallcom.2021.160980

    Article  CAS  Google Scholar 

  108. Rodenberg A, Orazietti M, Probst B et al. (2015) Mechanism of photocatalytic hydrogen generation by a polypyridyl-based cobalt catalyst in aqueous solution. Inorg Chem 54:646–657

    Article  PubMed  CAS  Google Scholar 

  109. Wang H, Guan Y, Hu S et al. (2019) Hydrothermal synthesis of band gap-tunable oxygen-doped g-C 3 N 4 with outstanding “two-channel” photocatalytic H2O2 production ability assisted by dissolution–precipitation process. Nano 14:1950023. https://doi.org/10.1142/S1793292019500231

    Article  CAS  Google Scholar 

  110. Wang R, Zhang X, Li F et al. (2018) Energy-level dependent H2O2 production on metal-free, carbon-content tunable carbon nitride photocatalysts. J Energy Chem 27:343–350. https://doi.org/10.1016/j.jechem.2017.12.014

    Article  Google Scholar 

  111. Zhao X, You Y, Huang S et al. (2020) Z‐scheme photocatalytic production of hydrogen peroxide over Bi4O5Br2/g-C3N4 heterostructure under visible light. Appl Catal B Environ 278:119251. https://doi.org/10.1016/j.apcatb.2020.119251

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would also like to acknowledge the Centre for Research and Instrumentation (CRIM), UKM, and Faculty of Engineering of Gifu University, Japan, for providing technical and management support. The authors would like to acknowledge Universiti Kebangsaan Malaysia (UKM) for their financial support under the Dana Impak Perdana research grant (DIP-2020-011).

Author information

Authors and Affiliations

Authors

Contributions

NAN wrote the original manuscript, prepared the methodology, conducted the experiment, and provided the visualization. MAM: conceptualization, supervision, project administration, funding, writing review, and editing. NSNH prepared the methodology and conducted the experiment. SFMY, MSM, TS, and KM: co-supervision, validation, review, and editing. All authors approved the final manuscript.

Corresponding author

Correspondence to Mohamad Azuwa Mohamed.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nordin, N.A., Mohamed, M.A., Hasnan, N.S.N. et al. Synergistic interaction and chemically bonded association between ZIF-8 and C-doped g-C3N4 for enhancement of visible light photocatalytic H2O2 production. J Sol-Gel Sci Technol (2024). https://doi.org/10.1007/s10971-024-06331-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10971-024-06331-x

Keywords

Navigation