Skip to main content
Log in

Remarkable electron and phonon transports in low-cost SnS: A new promising thermoelectric material

低成本SnS中卓越的电子和声子传输: 一种具有前途的新型热电材料

  • Review
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

As a deceptively simple material, SnS has received extensive attention in the thermoelectric community recently due to its fascinating electron and phonon transport features, making it a very promising thermoelectric candidate. In this review, we first discuss the fundamental characteristics of SnS, including crystal structures, electronic and phononic band structures, and physical or chemical properties. Meanwhile, the approaches of improving thermoelectric performance are summarized, including simultaneous carrier concentration tuning and carrier mobility improvement, multiple valence bands transport and their synergetic optimization, and anharmonicity and phonon “softening” behavior. We also compare the difference in electrical and thermal transport properties between crystals and polycrystalline SnS. Then, theoretical calculations to predict the maximum ZT in SnS system are also established for potential performance enhancement. Finally, some future possible strategies are proposed to aim at further promoting the figure of merit of SnS. The exploration and research on this new emerged material can contribute the thermoelectrics toward practical applications to meet market demands of low-cost, high-effectiveness, and environmental compatibility.

摘要

SnS作为一种看似简单的化合物, 近年来却因其极具吸引力的电子和声子传输特性而在热电领域得到广泛关注, 使其成为一种非常具有应用前景的热电材料候选者. 本文首先讨论了SnS的基本特性, 包括晶体结构、电子和声子能带结构以及物理和化学性质. 同时, 对提高该材料热电性能的策略也进行了总结, 包括载流子浓度的优化和载流子迁移率的提升, 多价带输运协同优化热电参数, 以及非简谐性和声子“软化”行为. 对于晶体和多晶SnS在电和热传输性能上的差异, 我们也进行了比较. 然后, 建立了预测SnS体系中最大ZT的理论模型计算, 以进一步提高其热电性能. 最后, 我们提出了进一步提升SnS体系ZT值的方法策略. 对这种新型材料的探索和研究将有助于热电材料的实际推广和应用, 以满足市场对低成本、高效率和环境兼容性的需求.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tan G, Zhao LD, Kanatzidis MG. Rationally designing high-performance bulk thermoelectric materials. Chem Rev, 2016, 116: 12123–12149

    Article  CAS  Google Scholar 

  2. Zhang X, Zhao LD. Thermoelectric materials: Energy conversion between heat and electricity. J Materiomics, 2015, 1: 92–105

    Article  Google Scholar 

  3. Qin B, Wang D, Zhao LD. Slowing down the heat in thermoelectrics. InfoMat, 2021, 3: 755–789

    Article  CAS  Google Scholar 

  4. Shi XL, Zou J, Chen ZG. Advanced thermoelectric design: From materials and structures to devices. Chem Rev, 2020, 120: 7399–7515

    Article  CAS  Google Scholar 

  5. Xiao Y, Zhao LD. Charge and phonon transport in PbTe-based thermoelectric materials. npj Quant Mater, 2018, 3: 55

    Article  Google Scholar 

  6. Chang C, Tan G, He J, et al. The thermoelectric properties of SnSe continue to surprise: Extraordinary electron and phonon transport. Chem Mater, 2018, 30: 7355–7367

    Article  CAS  Google Scholar 

  7. He J, Tritt TM. Advances in thermoelectric materials research: Looking back and moving forward. Science, 2017, 357

  8. Qian X, Wu H, Wang D, et al. Synergistically optimizing interdependent thermoelectric parameters of n-type PbSe through alloying CdSe. Energy Environ Sci, 2019, 12: 1969–1978

    Article  CAS  Google Scholar 

  9. Qin BC, Xiao Y, Zhou YM, et al. Thermoelectric transport properties of Pb-Sn-Te-Se system. Rare Met, 2017, 37: 343–350

    Article  Google Scholar 

  10. Qu WW, Zhang XX, Yuan BF, et al. Homologous layered InFeO3(ZnO)m: New promising abradable seal coating materials. Rare Met, 2018, 37: 79–94

    Article  CAS  Google Scholar 

  11. Wu D, Pei Y, Wang Z, et al. Significantly enhanced thermoelectric performance in n-type heterogeneous BiAgSeS composites. Adv Funct Mater, 2014, 24: 7763–7771

    Article  CAS  Google Scholar 

  12. Xiao Y, Zhao LD. Seeking new, highly effective thermoelectrics. Science, 2020, 367: 1196–1197

    Article  CAS  Google Scholar 

  13. Wang D, Huang Z, Zhang Y, et al. Extremely low thermal conductivity from bismuth selenohalides with 1D soft crystal structure. Sci China Mater, 2020, 63: 1759–1768

    Article  CAS  Google Scholar 

  14. Zhou Y, Zhao LD. Promising thermoelectric bulk materials with 2D structures. Adv Mater, 2017, 29: 1702676

    Article  Google Scholar 

  15. Xi L, Pan S, Li X, et al. Discovery of high-performance thermoelectric chalcogenides through reliable high-throughput material screening. J Am Chem Soc, 2018, 140: 10785–10793

    Article  CAS  Google Scholar 

  16. Pei Y, Wang H, Snyder GJ. Band engineering of thermoelectric materials. Adv Mater, 2012, 24: 6125–6135

    Article  CAS  Google Scholar 

  17. Nielsen MD, Ozolins V, Heremans JP. Lone pair electrons minimize lattice thermal conductivity. Energy Environ Sci, 2013, 6: 570–578

    Article  CAS  Google Scholar 

  18. Liu W, Tan X, Yin K, et al. Convergence of conduction bands as a means of enhancing thermoelectric performance of n-type Mg2Si1−xSnx solid solutions. Phys Rev Lett, 2012, 108: 166601

    Article  Google Scholar 

  19. Chang C, Zhao LD. Anharmoncity and low thermal conductivity in thermoelectrics. Mater Today Phys, 2018, 4: 50–57

    Article  Google Scholar 

  20. Dresselhaus M, Chen G, Tang M, et al. New directions for low-dimensional thermoelectric materials. Adv Mater, 2007, 19: 1043–1053

    Article  CAS  Google Scholar 

  21. Qiu Y, Jin Y, Wang D, et al. Realizing high thermoelectric performance in GeTe through decreasing the phase transition temperature via entropy engineering. J Mater Chem A, 2019, 7: 26393–26401

    Article  CAS  Google Scholar 

  22. Zhu T, Liu Y, Fu C, et al. Compromise and synergy in high-efficiency thermoelectric materials. Adv Mater, 2017, 29: 1605884

    Article  Google Scholar 

  23. Liu W, Hu J, Zhang S, et al. New trends, strategies and opportunities in thermoelectric materials: A perspective. Mater Today Phys, 2017, 1: 50–60

    Article  Google Scholar 

  24. Biswas K, He J, Blum ID, et al. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature, 2012, 489: 414–418

    Article  CAS  Google Scholar 

  25. Cao T, Shi XL, Zou J, et al. Advances in conducting polymer-based thermoelectric materials and devices. Microstructures, 2021, doi: https://doi.org/10.20517/microstructures.2021.06

  26. Poudel B, Hao Q, Ma Y, et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science, 2008, 320: 634–638

    Article  CAS  Google Scholar 

  27. Yan X, Poudel B, Ma Y, et al. Experimental studies on anisotropic thermoelectric properties and structures of n-type Bi2Te2.7Se0.3. Nano Lett, 2010, 10: 3373–3378

    Article  CAS  Google Scholar 

  28. Hu L, Wu H, Zhu T, et al. Tuning multiscale microstructures to enhance thermoelectric performance of n-type bismuth-telluride-based solid solutions Adv Energy Mater, 2015, 5: 1500411

    Article  Google Scholar 

  29. Harman TC, Taylor PJ, Walsh MP, et al. Quantum dot superlattice thermoelectric materials and devices Science, 2002, 297: 2229–2232

    Article  CAS  Google Scholar 

  30. Hsu KF, Loo S, Guo F, et al. Cubic AgPbmSbTe2+m: Bulk thermoelectric materials with high figure of merit Science, 2004, 303: 818–821

    Article  CAS  Google Scholar 

  31. Tan G, Shi F, Hao S, et al. Non-equilibrium processing leads to record high thermoelectric figure of merit in PbTe-SrTe Nat Commun, 2016, 7: 12167

    Article  CAS  Google Scholar 

  32. Xiao Y, Wu H, Li W, et al. Remarkable roles of Cu to synergistically optimize phonon and carrier transport in n-type PbTe-Cu2Te J Am Chem Soc, 2017, 139: 18732–18738

    Article  CAS  Google Scholar 

  33. Xiao Y, Wang D, Qin B, et al. Approaching topological insulating states leads to high thermoelectric performance in n-type PbTe J Am Chem Soc, 2018, 140: 13097–13102

    Article  CAS  Google Scholar 

  34. He W, Wang D, Dong JF, et al. Remarkable electron and phonon band structures lead to a high thermoelectric performance ZT > 1 in earth-abundant and eco-friendly SnS crystals J Mater Chem A, 2018, 6: 10048–10056

    Article  CAS  Google Scholar 

  35. Wu H, Lu X, Wang G, et al. Sodium-doped tin sulfide single crystal: A nontoxic earth-abundant material with high thermoelectric performance. Adv Energy Mater, 2018, 8: 1800087

    Article  Google Scholar 

  36. He W, Wang D, Wu H, et al. High thermoelectric performance in low-cost SnS0.91Se0.09 crystals. Science, 2019, 365: 1418–1424

    Article  CAS  Google Scholar 

  37. Tan Q, Zhao LD, Li JF, et al. Thermoelectrics with earth abundant elements: Low thermal conductivity and high thermopower in doped SnS J Mater Chem A, 2014, 2: 17302–17306

    Article  CAS  Google Scholar 

  38. Albers W, Haas C, Vink HJ, et al. Investigations on SnS J Appl Phys, 1961, 32: 2220–2225

    Article  CAS  Google Scholar 

  39. Zhou B, Li S, Li W, et al. Thermoelectric properties of SnS with Na-doping ACS Appl Mater Interfaces, 2017, 9: 34033–34041

    Article  CAS  Google Scholar 

  40. Chandrasekhar HR, Humphreys RG, Zwick U, et al. Infrared and Raman spectra of the IV–VI compounds SnS and SnSe Phys Rev B, 1977, 15: 2177–2183

    Article  CAS  Google Scholar 

  41. Tan Q, Li JF Thermoelectric properties of Sn-S bulk materials prepared by mechanical alloying and spark plasma sintering J Elec Materi, 2014, 43: 2435–2439

    Article  CAS  Google Scholar 

  42. Tan Q, Wu CF, Sun W, et al. Solvothermally synthesized SnS nanorods with high carrier mobility leading to thermoelectric enhancement. RSC Adv, 2016, 6: 43985–43988

    Article  CAS  Google Scholar 

  43. Jin Z, Mao T, Qiu P, et al. Thermoelectric properties and service stability of Ag-containing Cu2Se. Mater Today Phys, 2021, 21: 100550

    Article  CAS  Google Scholar 

  44. Tang H, Dong JF, Sun FH, et al. Adjusting Na doping via wet-chemical synthesis to enhance thermoelectric properties of polycrystalline SnS. Sci China Mater, 2019, 62: 1005–1012

    Article  CAS  Google Scholar 

  45. Wang Z, Wang D, Qiu Y, et al. Realizing high thermoelectric performance of polycrystalline SnS through optimizing carrier concentration and modifying band structure. J Alloys Compd, 2019, 789: 485–492

    Article  CAS  Google Scholar 

  46. Yang HQ, Wang XY, Wu H, et al. Sn vacancy engineering for enhancing the thermoelectric performance of two-dimensional SnS. J Mater Chem C, 2019, 7: 3351–3359

    Article  CAS  Google Scholar 

  47. Asfandiyar, Cai B, Zhao LD, et al. High thermoelectric figure of merit ZT > 1 in SnS polycrystals. J Materiomics, 2020, 6: 77–85

    Article  Google Scholar 

  48. Niu Y, Chen Y, Jiang J, et al. Enhanced thermoelectric performance in Li doped SnS via carrier concentration optimization. IOP Conf Ser: Mater Sci Eng, 2020, 738: 012016

    Article  CAS  Google Scholar 

  49. Prado-Gonjal J, Gainza J, Aguayo I, et al. High thermoelectric performance of rapidly microwave-synthesized Sn1−δS. Mater Adv, 2020, 1: 845–853

    Article  CAS  Google Scholar 

  50. Hu X, He W, Wang D, et al. Thermoelectric transport properties of n-type tin sulfide. Scripta Mater, 2019, 170: 99–105

    Article  CAS  Google Scholar 

  51. Huang ZC, Yao Y, Jun P, et al. Preparation and thermoelectric property of n-type SnS. J InOrg Mater, 2019, 34: 321–327

    Article  Google Scholar 

  52. Chattopadhyay T, Pannetier J, Von Schnering HG. Neutron diffraction study of the structural phase transition in SnS and SnSe. J Phys Chem Solids, 1986, 47: 879–885

    Article  CAS  Google Scholar 

  53. Parker D, Singh DJ. First principles investigations of the thermoelectric behavior of tin sulfide. J Appl Phys, 2010, 108: 083712

    Article  Google Scholar 

  54. Hao S, Dravid VP, Kanatzidis MG, et al. Research update: Prediction of high figure of merit plateau in SnS and solid solution of (Pb,Sn)S. APL Mater, 2016, 4: 104505

    Article  Google Scholar 

  55. Guo R, Wang X, Kuang Y, et al. First-principles study of anisotropic thermoelectric transport properties of IV–VI semiconductor compounds SnSe and SnS. Phys Rev B, 2015, 92: 115202

    Article  Google Scholar 

  56. He W, Hong T, Wang D, et al. Low carrier concentration leads to high in-plane thermoelectric performance in n-type SnS crystals. Sci China Mater, 2021, 64: 3051–3058

    Article  CAS  Google Scholar 

  57. Ge ZH, Zhao LD, Wu D, et al. Low-cost, abundant binary sulfides as promising thermoelectric materials. Mater Today, 2016, 19: 227–239

    Article  CAS  Google Scholar 

  58. Wei TR, Wu CF, Li F, et al. Low-cost and environmentally benign selenides as promising thermoelectric materials. J Materiomics, 2018, 4: 304–320

    Article  Google Scholar 

  59. Zhao LD, Lo SH, Zhang Y, et al. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature, 2014, 508: 373–377

    Article  CAS  Google Scholar 

  60. Peng K, Lu X, Zhan H, et al. Broad temperature plateau for high ZTs in heavily doped p-type SnSe single crystals. Energy Environ Sci, 2016, 9: 454–460

    Article  CAS  Google Scholar 

  61. Zhao LD, Chang C, Tan G, et al. SnSe: A remarkable new thermoelectric material. Energy Environ Sci, 2016, 9: 3044–3060

    Article  CAS  Google Scholar 

  62. Chang C, Wang D, He D, et al. Realizing high-ranged out-of-plane ZTs in n-type SnSe crystals through promoting continuous phase transition. Adv Energy Mater, 2019, 9: 1901334

    Article  Google Scholar 

  63. Vidal J, Lany S, d’Avezac M, et al. Band-structure, optical properties, and defect physics of the photovoltaic semiconductor SnS. Appl Phys Lett, 2012, 100: 032104

    Article  Google Scholar 

  64. May AF, Toberer ES, Saramat A, et al. Characterization and analysis of thermoelectric transport in n-type Ba8Ga16−xGe30+x. Phys Rev B, 2009, 80: 125205

    Article  Google Scholar 

  65. Slade TJ, Grovogui JA, Kuo JJ, et al. Understanding the thermally activated charge transport in NaPbmSbQm+2 (Q = S, Se, Te) thermoelectrics: Weak dielectric screening leads to grain boundary dominated charge carrier scattering. Energy Environ Sci, 2020, 13: 1509–1518

    Article  CAS  Google Scholar 

  66. Wang Y, Qin B, Zhao LD. Understanding the electrical transports of p-type polycrystalline SnSe with effective medium theory. Appl Phys Lett, 2021, 119: 044103

    Article  CAS  Google Scholar 

  67. Zhou C, Lee YK, Yu Y, et al. Polycrystalline SnSe with a thermoelectric figure of merit greater than the single crystal. Nat Mater, 2021, 20: 1378–1384

    Article  CAS  Google Scholar 

  68. Wei W, Chang C, Yang T, et al. Achieving high thermoelectric figure of merit in polycrystalline SnSe via introducing Sn vacancies. J Am Chem Soc, 2018, 140: 499–505

    Article  CAS  Google Scholar 

  69. Sarkar D, Ghosh T, Roychowdhury S, et al. Ferroelectric instability induced ultralow thermal conductivity and high thermoelectric performance in rhombohedral p-type GeSe crystal. J Am Chem Soc, 2020, 142: 12237–12244

    Article  CAS  Google Scholar 

  70. Wood M, Kuo JJ, Imasato K, et al. Improvement of low-temperature ZT in a Mg3Sb2-Mg3Bi2 solid solution via Mg-vapor annealing. Adv Mater, 2019, 31: 1902337

    Article  Google Scholar 

  71. Cutler M, Leavy JF, Fitzpatrick RL. Electronic transport in semimetallic cerium sulfide. Phys Rev, 1964, 133: A1143–A1152

    Article  Google Scholar 

  72. Zhao LD, Tan G, Hao S, et al. Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe. Science, 2016, 351: 141–144

    Article  CAS  Google Scholar 

  73. Chang C, Wu M, He D, et al. 3D charge and 2D phonon transports leading to high out-of-plane ZT in n-type SnSe crystals. Science, 2018, 360: 778–783

    Article  CAS  Google Scholar 

  74. Tang Y, Gibbs ZM, Agapito LA, et al. Convergence of multi-valley bands as the electronic origin of high thermoelectric performance in CoSb3 skutterudites. Nat Mater, 2015, 14: 1223–1228

    Article  CAS  Google Scholar 

  75. Zhang Q, Liao B, Lan Y, et al. High thermoelectric performance by resonant dopant indium in nanostructured SnTe. Proc Natl Acad Sci USA, 2013, 110: 13261–13266

    Article  CAS  Google Scholar 

  76. Heremans JP, Jovovic V, Toberer ES, et al. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science, 2008, 321: 554–557

    Article  CAS  Google Scholar 

  77. Zhang J, Liu R, Cheng N, et al. High-performance pseudocubic thermoelectric materials from non-cubic chalcopyrite compounds. Adv Mater, 2014, 26: 3848–3853

    Article  CAS  Google Scholar 

  78. Pei Y, Shi X, LaLonde A, et al. Convergence of electronic bands for high performance bulk thermoelectrics. Nature, 2011, 473: 66–69

    Article  CAS  Google Scholar 

  79. Roychowdhury S, Biswas K. Slight symmetry reduction in thermo-electrics. Chem, 2018, 4: 939–942

    Article  CAS  Google Scholar 

  80. Airapetyants S, Vinogradova M, Dubrovskaya I, et al. Structure of the valence band of heavily doped lead telluride. Sov Phys Solid State USSR, 1966, 8: 1069–1072

    Google Scholar 

  81. Wang S, Zheng G, Luo T, et al. Exploring the doping effects of Ag in p-type PbSe compounds with enhanced thermoelectric performance. J Phys D-Appl Phys, 2011, 44: 475304

    Article  Google Scholar 

  82. Qin Y, Hong T, Qin B, et al. Contrasting Cu roles lead to high ranged thermoelectric performance of PbS. Adv Funct Mater, 2021, 31: 2102185

    Article  CAS  Google Scholar 

  83. Kafalas JA, Brebrick RF, Strauss AJ. Evidence that SnTe is a semiconductor. Appl Phys Lett, 1964, 4: 93–94

    Article  CAS  Google Scholar 

  84. Rowe, D., Thermoelectrics Handbook: Macro to Nano CRC. Boca Raton: CRC Press, 2006

    Google Scholar 

  85. Tan G, Shi F, Hao S, et al. Codoping in SnTe: Enhancement of thermoelectric performance through synergy of resonance levels and band convergence. J Am Chem Soc, 2015, 137: 5100–5112

    Article  CAS  Google Scholar 

  86. Zhao LD, He J, Hao S, et al. Raising the thermoelectric performance of p-type PbS with endotaxial nanostructuring and valence-band offset engineering using CdS and ZnS. J Am Chem Soc, 2012, 134: 16327–16336

    Article  CAS  Google Scholar 

  87. Hodges JM, Hao S, Grovogui JA, et al. Chemical insights into PbSe-x% HgSe: High power factor and improved thermoelectric performance by alloying with discordant atoms. J Am Chem Soc, 2018, 140: 18115–18123

    Article  CAS  Google Scholar 

  88. Božin ES, Malliakas CD, Souvatzis P, et al. Entropically stabilized local dipole formation in lead chalcogenides. Science, 2010, 330: 1660–1663

    Article  Google Scholar 

  89. Huang Z, Zhao LD. Symmetry and asymmetry in thermoelectrics. J Mater Chem C, 2020, 8: 12054–12061

    Article  Google Scholar 

  90. He W, Qin B, Zhao LD. Predicting the potential performance in p-type SnS crystals via utilizing the weighted mobility and quality factor. Chin Phys Lett, 2020, 37: 087104

    Article  CAS  Google Scholar 

  91. Snyder GJ, Snyder AH, Wood M, et al. Weighted mobility. Adv Mater, 2020, 32: 2001537

    Article  CAS  Google Scholar 

  92. Qin B, He W, Zhao LD. Estimation of the potential performance in p-type SnSe crystals through evaluating weighted mobility and effective mass. J Materiomics, 2020, 6: 671–676

    Article  Google Scholar 

  93. Xiao Z, Ran FY, Hosono H, et al. Route to n-type doping in SnS. Appl Phys Lett, 2015, 106: 152103

    Article  Google Scholar 

  94. Malone BD, Gali A, Kaxiras E. First principles study of point defects in SnS. Phys Chem Chem Phys, 2014, 16: 26176–26183

    Article  CAS  Google Scholar 

  95. Ran FY, Xiao Z, Toda Y, et al. n-type conversion of SnS by isovalent ion substitution: Geometrical doping as a new doping route. Sci Rep, 2015, 5: 10428

    Article  Google Scholar 

  96. Dussan A, Mesa F, Gordillo G. Effect of substitution of Sn for Bi on structural and electrical transport properties of SnS thin films. J Mater Sci, 2010, 45: 2403–2407

    Article  CAS  Google Scholar 

  97. Sinsermsuksakul P, Chakraborty R, Kim SB, et al. Antimony-doped tin(II) sulfide thin films. Chem Mater, 2012, 24: 4556–4562

    Article  CAS  Google Scholar 

  98. Iguchi Y, Inoue K, Sugiyama T, et al. Single-crystal growth of Cl-doped n-type SnS using SnCl2 self-flux. Inorg Chem, 2018, 57: 6769–6772

    Article  CAS  Google Scholar 

  99. Kawanishi S, Suzuki I, Ohsawa T, et al. Growth of large single crystals of n-type SnS from halogen-added Sn flux. Cryst Growth Des, 2020, 20: 5931–5939

    Article  CAS  Google Scholar 

  100. Yin Y, Cai J, Wang H, et al. Single-crystal growth of n-type SnS0.95 by the temperature-gradient technique. Vacuum, 2020, 182: 109789

    Article  CAS  Google Scholar 

  101. Li CW, Hong J, May AF, et al. Orbitally driven giant phonon anharmonicity in SnSe Nat Phys, 2015, 11: 1063–1069

    Article  CAS  Google Scholar 

  102. Zhang X, Chang C, Zhou Y, et al. BiCuSeO thermoelectrics: An update on recent progress and perspective Materials, 2017, 10: 198

    Article  Google Scholar 

  103. Liu X, Wang D, Wu H, et al. Intrinsically low thermal conductivity in BiSbSe3: A promising thermoelectric material with multiple conduction bands Adv Funct Mater, 2019, 29: 1806558

    Article  Google Scholar 

  104. Zhao LD, Berardan D, Pei YL, et al. Bi1−xSrxCuSeO oxyselenides as promising thermoelectric materials Appl Phys Lett, 2010, 97: 092118

    Article  Google Scholar 

  105. Skoug EJ, Morelli DT. Role of lone-pair electrons in producing minimum thermal conductivity in nitrogen-group chalcogenide compounds Phys Rev Lett, 2011, 107: 235901

    Article  Google Scholar 

  106. Pei YL, Wu H, Sui J, et al. High thermoelectric performance in n-type BiAgSeS due to intrinsically low thermal conductivity Energy Environ Sci, 2013, 6: 1750

    Article  CAS  Google Scholar 

  107. Kurosaki K, Kosuga A, Muta H, et al. Ag9TlTe5: A high-performance thermoelectric bulk material with extremely low thermal conductivity. Appl Phys Lett, 2005, 87: 061919

    Article  Google Scholar 

  108. Brown SR, Kauzlarich SM, Gascoin F, et al. Yb14MnSb11: New high efficiency thermoelectric material for power generation. Chem Mater, 2006, 18: 1873–1877

    Article  CAS  Google Scholar 

  109. Jana MK, Pal K, Warankar A, et al. Intrinsic rattler-induced low thermal conductivity in zintl type TlInTe2. J Am Chem Soc, 2017, 139: 4350–4353

    Article  CAS  Google Scholar 

  110. Morelli DT, Jovovic V, Heremans JP. Intrinsically minimal thermal conductivity in cubic I–V–VI2 semiconductors. Phys Rev Lett, 2008, 101: 035901

    Article  CAS  Google Scholar 

  111. Dongmin Kang S, Jeffrey Snyder G. Charge-transport model for conducting polymers. Nat Mater, 2016, 16: 252–257

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51772012), the National Key Research and Development Program of China (2018YFA0702100), the 111 Project (B17002). Zhao L appreciates the support of the high performance computing (HPC) resources at Beihang University, and the National Science Fund for Distinguished Young Scholars (51925101).

Author information

Authors and Affiliations

Authors

Contributions

Zhao LD conceived the structure of this review. He W and Zhao LD participated in the analysis, drawing and writing of the entire perspective. Ang R and Zhao LD revised the draft before it was submitted, and all the authors co-edited the final version of this perspective.

Corresponding author

Correspondence to Li-Dong Zhao  (赵立东).

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Wenke He is currently an associate research fellow at the Institute of Nuclear Science and Technology, Sichuan University. He received his BE degree from China Three Gorges University in 2016 and PhD degree from Beihang University in 2021. His main research interests focus on the crystal growth and performance optimization of thermoelectric materials with layered structures.

Ran Ang is a full professor at Sichuan University since 2015. He received his PhD degree from the Institute of Solid State Physics, Chinese Academy of Sciences, in 2008, and his postdoctoral research experience spanned 7 years during 2008–2015 from Nanyang Technological University, National University of Singapore, Tohoku University, and National Institute for Materials Science, Japan. He has been working on thermoelectric materials, superconducting materials, and magnetic materials for more than 18 years. His research interest focuses on materials physics and thermoelectric applications.

Li-Dong Zhao is a full professor of the School of Materials Science and Engineering at Beihang University, China. He received his PhD degree from the University of Science and Technology Beijing, China in 2009. He was a postdoctoral research associate at the Université Paris-Sud and Northwestern University from 2009 to 2014. His research interests include electrical and thermal transport behaviors in the compounds with layered structures. Group website: http://shi.buaa.edu.cn/zhaolidong/zh_CN/index.ht:rn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, W., Ang, R. & Zhao, LD. Remarkable electron and phonon transports in low-cost SnS: A new promising thermoelectric material. Sci. China Mater. 65, 1143–1155 (2022). https://doi.org/10.1007/s40843-021-1945-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-021-1945-1

Keywords

Navigation