Skip to main content
Log in

Application of hierarchically porous metal-organic frameworks in heterogeneous catalysis: A review

多级孔金属-有机骨架材料在多相催化方面的研究进展

  • Reviews
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Hierarchically porous metal-organic frameworks (H-MOFs) with micro-, meso- and macropores have emerged as a popular class of crystalline porous materials that have attracted extensive interests, and they have been studied in diverse applications, especially in heterogeneous catalysis. The hierarchical structures enable sufficient diffusion and accessibility to the active sites of the molecules and permit the encapsulation of catalytic guest molecules to exploit more possibilities with enhanced catalytic performance. In this review, we have summarized the recent representative developments of H-MOFs in the field of heterogeneous catalysis, which includes oxidation reaction, hydrogenation reaction, and condensation reaction. Emphasis is placed on the multiple functions of hierarchical structures, and the catalytic activity, selectivity, stability, recyclability, etc. of the industrial utility of H-MOFs. Finally, the prospects and challenges of H-MOFs in heterogeneous catalysis and the remaining issues in this field are presented.

摘要

兼具微孔、介孔和大孔结构的多级孔金属-有机骨架(H-MOFs) 是近年来发展迅猛的一类多孔晶体材料, 在诸多领域尤其是多相催化 方面具有广泛的应用前景. 本文综述了近年来H-MOFs在多相催化领 域的研究进展, 包括氧化反应、加氢反应和缩合反应等. 重点介绍了 H-MOFs多级孔结构的多功能性, 以及其工业适用性, 如催化活性、选 择性、稳定性等. 最后展望了H-MOFs在多相催化领域的应用前景、面 临的挑战以及待解决的问题.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liang W, Wied P, Carraro F, et al. Metal-organic framework-based enzyme biocomposites. Chem Rev, 2021, 121: 1077–1129

    Article  CAS  Google Scholar 

  2. Duan C, Yu Y, Xiao J, et al. Recent advancements in metal-organic frameworks for green applications. Green Energy Environ, 2021, 6: 33–49

    Article  Google Scholar 

  3. Zhao Y, Liu J, Horn M, et al. Recent advancements in metal organic framework based electrodes for supercapacitors. Sci China Mater, 2018, 61: 159–184

    Article  CAS  Google Scholar 

  4. Li J, Wang X, Zhao G, et al. Metal-organic framework-based materials: superior adsorbents for the capture of toxic and radioactive metal ions. Chem Soc Rev, 2018, 47: 2322–2356

    Article  CAS  Google Scholar 

  5. Li L, Duan Y, Liao S, et al. Adsorption and separation of propane/propylene on various ZIF-8 polymorphs: Insights from GCMC simulations and the ideal adsorbed solution theory (IAST). Chem Eng J, 2020, 386: 123945

    Article  CAS  Google Scholar 

  6. Liu L, Wang L, Liu D, et al. High-throughput computational screening of Cu-MOFs with open metal sites for efficient C2H2/C2H4 separation. Green Energy Environ, 2020, 5: 333–340

    Article  Google Scholar 

  7. Jiang K, Zhang L, Xia T, et al. A water-stable fcu-MOF material with exposed amino groups for the multi-functional separation of small molecules. Sci China Mater, 2019, 62: 1315–1322

    Article  CAS  Google Scholar 

  8. Kang YS, Lu Y, Chen K, et al. Metal-organic frameworks with catalytic centers: From synthesis to catalytic application. Coord Chem Rev, 2019, 378: 262–280

    Article  CAS  Google Scholar 

  9. Wu Q, Liang J, Yi JD, et al. Porous nitrogen/halogen dual-doped nanocarbons derived from imidazolium functionalized cationic metal-organic frameworks for highly efficient oxygen reduction reaction. Sci China Mater, 2019, 62: 671–680

    Article  CAS  Google Scholar 

  10. Abazari R, Sanati S, Morsali A, et al. Ultrafast post-synthetic modification of a pillared cobalt(II)-based metal-organic framework via sulfurization of its pores for high-performance supercapacitors. J Mater Chem A, 2019, 7: 11953–11966

    Article  CAS  Google Scholar 

  11. Zheng S, Li Q, Xue H, et al. A highly alkaline-stable metal oxide@-metal-organic framework composite for high-performance electrochemical energy storage. Natl Sci Rev, 2020, 7: 305–314

    Article  CAS  Google Scholar 

  12. Luo X, Chen Y, Mo Y. A review of charge storage in porous carbon-based supercapacitors. New Carbon Mater, 2021, 36: 49–68

    Article  Google Scholar 

  13. Abazari R, Ataei F, Morsali A, et al. A luminescent amine-functionalized metal-organic framework conjugated with folic acid as a targeted biocompatible pH-responsive nanocarrier for apoptosis induction in breast cancer cells. ACS Appl Mater Interfaces, 2019, 11: 45442–45454

    Article  CAS  Google Scholar 

  14. Yuan S, Zou L, Qin JS, et al. Construction of hierarchically porous metal-organic frameworks through linker labilization. Nat Commun, 2017, 8: 15356

    Article  CAS  Google Scholar 

  15. Fujita M, Kwon YJ, Washizu S, et al. Preparation, clathration ability, and catalysis of a two-dimensional square network material composed of cadmium(II) and 4,4′-bipyridine. J Am Chem Soc, 1994, 116: 1151–1152

    Article  CAS  Google Scholar 

  16. Liu J, Chen L, Cui H, et al. Applications of metal-organic frameworks in heterogeneous supramolecular catalysis. Chem Soc Rev, 2014, 43: 6011–6061

    Article  CAS  Google Scholar 

  17. Yin S, Chen Y, Li M, et al. Construction of NH2-MIL-125(Ti)/Bi2Wo6 composites with accelerated charge separation for degradation of organic contaminants under visible light irradiation. Green Energy Environ, 2020, 5: 203–213

    Article  Google Scholar 

  18. Liu D, Zou D, Zhu H, et al. Mesoporous metal-organic frameworks: Synthetic strategies and emerging applications. Small, 2018, 14: 1801454

    Article  Google Scholar 

  19. Duan C, Yu Y, Yang P, et al. Engineering new defects in MIL-100(Fe) via a mixed-ligand approach to effect enhanced volatile organic compound adsorption capacity. Ind Eng Chem Res, 2020, 59: 774–782

    Article  CAS  Google Scholar 

  20. Xuan W, Zhu C, Liu Y, et al. Mesoporous metal-organic framework materials. Chem Soc Rev, 2012, 41: 1677–1695

    Article  CAS  Google Scholar 

  21. Duan C, Li F, Luo S, et al. Facile synthesis of hierarchical porous metal-organic frameworks with enhanced catalytic activity. Chem Eng J, 2018, 334: 1477–1483

    Article  CAS  Google Scholar 

  22. Duan C, Zhang Y, Li J, et al. Rapid room-temperature preparation of hierarchically porous metal-organic frameworks for efficient uranium removal from aqueous solutions. Nanomaterials, 2020, 10: 1539

    Article  CAS  Google Scholar 

  23. Shan Y, Chen L, Pang H, et al. Metal-organic framework-based hybrid frameworks. Small Struct, 2021, 2: 2000078

    Article  Google Scholar 

  24. Bradshaw D, El-Hankari S, Lupica-Spagnolo L. Supramolecular templating of hierarchically porous metal-organic frameworks. Chem Soc Rev, 2014, 43: 5431–5443

    Article  CAS  Google Scholar 

  25. Bavykina A, Kolobov N, Khan IS, et al. Metal-organic frameworks in heterogeneous catalysis: Recent progress, new trends, and future perspectives. Chem Rev, 2020, 120: 8468–8535

    Article  CAS  Google Scholar 

  26. Henschel A, Gedrich K, Kraehnert R, et al. Catalytic properties of MIL-101. Chem Commun, 2008, 4192

  27. Duan C, Li F, Yang M, et al. Rapid synthesis of hierarchically structured multifunctional metal-organic zeolites with enhanced volatile organic compounds adsorption capacity. Ind Eng Chem Res, 2018, acs.iecr.8b04028

  28. Ke SC, Luo TT, Chang GG, et al. Spatially ordered arrangement of multifunctional sites at molecule level in a single catalyst for tandem synthesis of cyclic carbonates. Inorg Chem, 2020, 59: 1736–1745

    Article  CAS  Google Scholar 

  29. Aijaz A, Karkamkar A, Choi YJ, et al. Immobilizing highly catalytically active Pt nanoparticles inside the pores of metal-organic framework: A double solvents approach. J Am Chem Soc, 2012, 134: 13926–13929

    Article  CAS  Google Scholar 

  30. Peng L, Zhang J, Xue Z, et al. Highly mesoporous metal-organic framework assembled in a switchable solvent. Nat Commun, 2014, 5: 4465

    Article  CAS  Google Scholar 

  31. Zhou YX, Chen YZ, Hu Y, et al. MIL-101-SO3H: A highly efficient Brønsted acid catalyst for heterogeneous alcoholysis of epoxides under ambient conditions. Chem Eur J, 2014, 20: 14976–14980

    Article  CAS  Google Scholar 

  32. Yang X, Qiao L, Dai W. One-pot synthesis of a hierarchical microporous-mesoporous phosphotungstic acid-HKUST-1 catalyst and its application in the selective oxidation of cyclopentene to glutaraldehyde. Chin J Catal, 2015, 36: 1875–1885

    Article  CAS  Google Scholar 

  33. Li B, Chrzanowski M, Zhang Y, et al. Applications of metal-organic frameworks featuring multi-functional sites. Coord Chem Rev, 2016, 307: 106–129

    Article  CAS  Google Scholar 

  34. Zhang F, Jin Y, Shi J, et al. Polyoxometalates confined in the mesoporous cages of metal-organic framework MIL-100(Fe): Efficient heterogeneous catalysts for esterification and acetalization reactions. Chem Eng J, 2015, 269: 236–244

    Article  CAS  Google Scholar 

  35. Duan C, Yu Y, Xiao J, et al. Water-based routes for synthesis of metal-organic frameworks: A review. Sci China Mater, 2020, 63: 667–685

    Article  Google Scholar 

  36. Li X, Yang X, Xue H, et al. Metal-organic frameworks as a platform for clean energy applications. EnergyChem, 2020, 2: 100027

    Article  Google Scholar 

  37. Long J, Liu H, Wu S, et al. Selective oxidation of saturated hydrocarbons using Au-Pd alloy nanoparticles supported on metal-organic frameworks. ACS Catal, 2013, 647–6542

  38. Li Z, Peters AW, Bernales V, et al. Metal-organic framework supported cobalt catalysts for the oxidative dehydrogenation of propane at low temperature. ACS Cent Sci, 2017, 31–382

  39. Liu M, Wu J, Hou H. Metal-organic framework (MOF)-based materials as heterogeneous catalysts for C—H bond activation. Chem Eur J, 2018, chem.201804149

  40. Granadeiro CM, Barbosa ADS, Silva P, et al. Monovacant polyoxometalates incorporated into MIL-101(Cr): Novel heterogeneous catalysts for liquid phase oxidation. Appl Catal A-Gen, 2013, 453: 316–326

    Article  CAS  Google Scholar 

  41. Yuan K, Song T, Wang D, et al. Effective and selective catalysts for cinnamaldehyde hydrogenation: Hydrophobic hybrids of metal-organic frameworks, metal nanoparticles, and micro- and mesoporous polymers. Angew Chem Int Ed, 2018, 57: 5708–5713

    Article  CAS  Google Scholar 

  42. Desai SP, Malonzo CD, Webber T, et al. Assembly of dicobalt and cobalt-aluminum oxide clusters on metal-organic framework and nanocast silica supports. Faraday Discuss, 2017, 201: 287–302

    Article  CAS  Google Scholar 

  43. Faust T. MOFs move to market. Nat Chem, 2016, 8: 990–991

    Article  CAS  Google Scholar 

  44. Teo WL, Zhou W, Qian C, et al. Industrializing metal-organic frameworks: Scalable synthetic means and their transformation into functional materials. Mater Today, 2021, 47: 170–186

    Article  CAS  Google Scholar 

  45. Gaab M, Trukhan N, Maurer S, et al. The progression of Al-based metal-organic frameworks—From academic research to industrial production and applications. Microporous Mesoporous Mater, 2012, 157: 131–136

    Article  CAS  Google Scholar 

  46. Zhan G, Zeng HC. Integrated nanocatalysts with mesoporous silica/silicate and microporous MOF materials. Coord Chem Rev, 2016, 320–321: 181–192

    Article  Google Scholar 

  47. Song L, Zhang J, Sun L, et al. Mesoporous metal-organic frameworks: Design and applications. Energy Environ Sci, 2012, 5: 7508–7520

    Article  CAS  Google Scholar 

  48. Huang YB, Liang J, Wang XS, et al. Multifunctional metal-organic framework catalysts: Synergistic catalysis and tandem reactions. Chem Soc Rev, 2017, 46: 126–157

    Article  CAS  Google Scholar 

  49. Zhong W, Liu H, Bai C, et al. Base-free oxidation of alcohols to esters at room temperature and atmospheric conditions using nanoscale Co-based catalysts. ACS Catal, 2015, 5: 1850–1856

    Article  CAS  Google Scholar 

  50. Liu X, He L, Liu YM, et al. Supported gold catalysis: From small molecule activation to green chemical synthesis. Acc Chem Res, 2014, 47: 793–804

    Article  CAS  Google Scholar 

  51. Dhakshinamoorthy A, Asiri AM, Garcia H. Metal-organic frameworks as catalysts for oxidation reactions. Chem Eur J, 2016, 22: 8012–8024

    Article  CAS  Google Scholar 

  52. Xie MH, Yang XL, He Y, et al. Highly efficient C-H oxidative activation by a porous MnIII-porphyrin metal-organic framework under mild conditions. Chem Eur J, 2013, 19: 14316–14321

    Article  CAS  Google Scholar 

  53. Simons MC, Ortuño MA, Bernales V, et al. C-H bond activation on bimetallic two-atom Co-M oxide clusters deposited on Zr-based MOF nodes: Effects of doping at the molecular level. ACS Catal, 2018, 8: 2864–2869

    Article  CAS  Google Scholar 

  54. Maksimchuk NV, Kovalenko KA, Fedin VP, et al. Cyclohexane selective oxidation over metal-organic frameworks of MIL-101 family: Superior catalytic activity and selectivity. Chem Commun, 2012, 48: 6812–6814

    Article  CAS  Google Scholar 

  55. Chen YZ, Zhou YX, Wang H, et al. Multifunctional PdAg@MIL-101 for one-pot cascade reactions: Combination of host-guest cooperation and bimetallic synergy in catalysis. ACS Catal, 2015, 5: 2062–2069

    Article  CAS  Google Scholar 

  56. Liu H, Li Y, Luque R, et al. A tuneable bifunctional water-compatible heterogeneous catalyst for the selective aqueous hydrogenation of phenols. Adv Synth Catal, 2011, 353: 3107–3113

    Article  CAS  Google Scholar 

  57. Dhakshinamoorthy A, Alvaro M, Garcia H. Metal-organic frameworks as heterogeneous catalysts for oxidation reactions. Catal Sci Technol, 2011, 1: 856–867

    Article  CAS  Google Scholar 

  58. Roy P, Manassero M. Tetranuclear copper(II)-Schiff-base complexes as active catalysts for oxidation of cyclohexane and toluene. Dalton Trans, 2010, 39: 1539–1545

    Article  CAS  Google Scholar 

  59. Wang J, Yang M, Dong W, et al. Co(II) complexes loaded into metal-organic frameworks as efficient heterogeneous catalysts for aerobic epoxidation of olefins. Catal Sci Technol, 2016, 6: 161–168

    Article  Google Scholar 

  60. Liu L, Song Y, Chong H, et al. Size-confined growth of atom-precise nanoclusters in metal-organic frameworks and their catalytic applications. Nanoscale, 2016, 8: 1407–1412

    Article  CAS  Google Scholar 

  61. Zhang P, Chen C, Kang X, et al. In situ synthesis of sub-nanometer metal particles on hierarchically porous metal-organic frameworks via interfacial control for highly efficient catalysis. Chem Sci, 2018, 9: 1339–1343

    Article  CAS  Google Scholar 

  62. Du DY, Qin JS, Li SL, et al. Recent advances in porous polyoxometalate-based metal-organic framework materials. Chem Soc Rev, 2014, 43: 4615–4632

    Article  CAS  Google Scholar 

  63. Cai M, Li Y, Liu Q, et al. One-step construction of hydrophobic MOFs@COFs core-shell composites for heterogeneous selective catalysis. Adv Sci, 2019, 6: 1802365

    Article  Google Scholar 

  64. Dhakshinamoorthy A, Alvaro M, Garcia H. Aerobic oxidation of benzylic alcohols catalyzed by metal—organic frameworks assisted by TEMPO. ACS Catal, 2011, 1: 48–53

    Article  CAS  Google Scholar 

  65. Qi Y, Luan Y, Yu J, et al. Nanoscaled copper metal-organic framework (MOF) based on carboxylate ligands as an efficient heterogeneous catalyst for aerobic epoxidation of olefins and oxidation of benzylic and allylic alcohols. Chem Eur J, 2015, 21: 1589–1597

    Article  CAS  Google Scholar 

  66. Islamoglu T, Ray D, Li P, et al. From transition metals to lanthanides to actinides: Metal-mediated tuning of electronic properties of isostructural metal-organic frameworks. Inorg Chem, 2018, 57: 13246–13251

    Article  CAS  Google Scholar 

  67. Wang X, Zhang X, Li P, et al. Vanadium catalyst on isostructural transition metal, lanthanide, and actinide based metal-organic frameworks for alcohol oxidation. J Am Chem Soc, 2019, 141: 8306–8314

    Article  CAS  Google Scholar 

  68. Bhadra BN, Song JY, Khan NA, et al. TiO2-containing carbon derived from a metal-organic framework composite: A highly active catalyst for oxidative desulfurization. ACS Appl Mater Interfaces, 2017, 9: 31192–31202

    Article  CAS  Google Scholar 

  69. Tan P, Xie XY, Liu XQ, et al. Fabrication of magnetically responsive HKUST-1/Fe3O4 composites by dry gel conversion for deep desulfurization and denitrogenation. J Hazard Mater, 2017, 321: 344–352

    Article  CAS  Google Scholar 

  70. Li SW, Gao RM, Zhang RL, et al. Template method for a hybrid catalyst material POM@MOF-199 anchored on MCM-41: Highly oxidative desulfurization of DBT under molecular oxygen. Fuel, 2016, 184: 18–27

    Article  CAS  Google Scholar 

  71. Li SW, Li JR, Gao Y, et al. Metal modified heteropolyacid incorporated into porous materials for a highly oxidative desulfurization of DBT under molecular oxygen. Fuel, 2017, 197: 551–561

    Article  CAS  Google Scholar 

  72. Li SW, Li JR, Jin QP, et al. Preparation of mesoporous Cs-POM@ MOF-199@MCM-41 under two different synthetic methods for a highly oxidesulfurization of dibenzothiophene. J Hazard Mater, 2017, 337: 208–216

    Article  CAS  Google Scholar 

  73. Li SW, Yang Z, Gao RM, et al. Direct synthesis of mesoporous SRL-POM@MOF-199@MCM-41 and its highly catalytic performance for the oxidesulfurization of DBT. Appl Catal B-Environ, 2018, 221: 574–583

    Article  CAS  Google Scholar 

  74. Li SW, Gao RM, Zhao J. Deep oxidative desulfurization of fuel catalyzed by modified heteropolyacid: The comparison performance of three kinds of ionic liquids. ACS Sustain Chem Eng, 2018, 6: 15858–15866

    Article  CAS  Google Scholar 

  75. Buru CT, Li P, Mehdi BL, et al. Adsorption of a catalytically accessible polyoxometalate in a mesoporous channel-type metal-organic framework. Chem Mater, 2017, 29: 5174–5181

    Article  CAS  Google Scholar 

  76. Atilgan A, Islamoglu T, Howarth AJ, et al. Detoxification of a sulfur mustard simulant using a bodipy-functionalized zirconium-based metal-organic framework. ACS Appl Mater Interfaces, 2017, 9: 24555–24560

    Article  CAS  Google Scholar 

  77. Liu Y, Buru CT, Howarth AJ, et al. Efficient and selective oxidation of sulfur mustard using singlet oxygen generated by a pyrene-based metal-organic framework. J Mater Chem A, 2016, 4: 13809–13813

    Article  CAS  Google Scholar 

  78. Buru CT, Wasson MC, Farha OK. H5PV2Mo10O40 polyoxometalate encapsulated in NU-1000 metal-organic framework for aerobic oxidation of a mustard gas simulant. ACS Appl Nano Mater, 2020, 658–6642

  79. Yi J, Miller JT, Zemlyanov DY, et al. A reusable unsupported rhenium nanocrystalline catalyst for acceptorless dehydrogenation of alcohols through Y-C-H activation. Angew Chem Int Ed, 2014, 53: 833–836

    Article  CAS  Google Scholar 

  80. Ortuño MA, Bernales V, Gagliardi L, et al. Computational study of first-row transition metals supported on MOF NU-1000 for catalytic acceptorless alcohol dehydrogenation. J Phys Chem C, 2016, 120: 24697–24705

    Article  Google Scholar 

  81. Tilgner D, Friedrich M, Hermannsdörfer J, et al. Titanium dioxide reinforced metal-organic framework Pd catalysts: Activity and reusability enhancement in alcohol dehydrogenation reactions and improved photocatalytic performance. ChemCatChem, 2015, 7: 3916–3922

    Article  CAS  Google Scholar 

  82. Sawama Y, Morita K, Asai S, et al. Palladium on carbon-catalyzed aqueous transformation of primary alcohols to carboxylic acids based on dehydrogenation under mildly reduced pressure. Adv Synth Catal, 2015, 357: 1205–1210

    Article  CAS  Google Scholar 

  83. Huang YB, Shen M, Wang X, et al. Hierarchically micro- and mesoporous metal-organic framework-supported alloy nanocrystals as bifunctional catalysts: Toward cooperative catalysis. J Catal, 2015, 330: 452–457

    Article  CAS  Google Scholar 

  84. Sattler JJHB, Ruiz-Martinez J, Santillan-Jimenez E, et al. Catalytic dehydrogenation of light alkanes on metals and metal oxides. Chem Rev, 2014, 114: 10613–10653

    Article  CAS  Google Scholar 

  85. Carrero CA, Schloegl R, Wachs IE, et al. Critical literature review of the kinetics for the oxidative dehydrogenation of propane over well-defined supported vanadium oxide catalysts. ACS Catal, 2014, 4: 3357–3380

    Article  CAS  Google Scholar 

  86. Yan JM, Wang ZL, Gu L, et al. AuPd-MnOx/MOF-graphene: An efficient catalyst for hydrogen production from formic acid at room temperature. Adv Energy Mater, 2015, 5: 1500107

    Article  Google Scholar 

  87. Yadav M, Xu Q. Liquid-phase chemical hydrogen storage materials. Energy Environ Sci, 2012, 5: 9698–9725

    Article  CAS  Google Scholar 

  88. Kang JX, Chen TW, Zhang DF, et al. PtNiAu trimetallic nanoalloys enabled by a digestive-assisted process as highly efficient catalyst for hydrogen generation. Nano Energy, 2016, 23: 145–152

    Article  CAS  Google Scholar 

  89. Ke F, Wang L, Zhu J. An efficient room temperature core-shell AgPd@MOF catalyst for hydrogen production from formic acid. Nanoscale, 2015, 7: 8321–8325

    Article  CAS  Google Scholar 

  90. Martis M, Mori K, Fujiwara K, et al. Amine-functionalized MIL-125 with imbedded palladium nanoparticles as an efficient catalyst for dehydrogenation of formic acid at ambient temperature. J Phys Chem C, 2013, 117: 22805–22810

    Article  CAS  Google Scholar 

  91. Lin W, Murphy CJ. A demonstration of Le Chatelier’s principle on the nanoscale. ACS Cent Sci, 2017, 1096–11022

  92. Park YK, Choi SB, Nam HJ, et al. Catalytic nickel nanoparticles embedded in a mesoporous metal-organic framework. Chem Commun, 2010, 46: 3086–3088

    Article  CAS  Google Scholar 

  93. Chen X, Shen K, Ding D, et al. Solvent-driven selectivity control to either anilines or dicyclohexylamines in hydrogenation of nitroarenes over a bifunctional Pd/MIL-101 catalyst. ACS Catal, 2018, 8: 10641–10648

    Article  CAS  Google Scholar 

  94. Zhao M, Yuan K, Wang Y, et al. Metal-organic frameworks as selectivity regulators for hydrogenation reactions. Nature, 2016, 539: 76–80

    Article  CAS  Google Scholar 

  95. Huang G, Yang Q, Xu Q, et al. Polydimethylsiloxane coating for a palladium/MOF composite: Highly improved catalytic performance by surface hydrophobization. Angew Chem Int Ed, 2016, 55: 7379–7383

    Article  CAS  Google Scholar 

  96. Wang P, Li X, Zhang P, et al. Transitional MOFs: Exposing metal sites with porosity for enhancing catalytic reaction performance. ACS Appl Mater Interfaces, 2020, 12: 23968–23975

    Article  CAS  Google Scholar 

  97. Chughtai AH, Ahmad N, Younus HA, et al. Metal-organic frameworks: Versatile heterogeneous catalysts for efficient catalytic organic transformations. Chem Soc Rev, 2015, 44: 6804–6849

    Article  CAS  Google Scholar 

  98. McDonald TM, Mason JA, Kong X, et al. Cooperative insertion of CO2 in diamine-appended metal-organic frameworks. Nature, 2015, 519: 303–308

    Article  CAS  Google Scholar 

  99. Yu K, Puthiaraj P, Ahn WS. One-pot catalytic transformation of olefins into cyclic carbonates over an imidazolium bromide-functionalized Mn(III)-porphyrin metal-organic framework. Appl Catal B-Environ, 2020, 273: 119059

    Article  CAS  Google Scholar 

  100. Duan C, Yu Y, Li F, et al. Ultrafast room-temperature synthesis of hierarchically porous metal-organic frameworks with high space-time yields. CrystEngComm, 2020, 22: 2675–2680

    Article  CAS  Google Scholar 

  101. Peng L, Zhang J, Li J, et al. Hollow metal-organic framework polyhedra synthesized by a CO2-ionic liquid interfacial templating route. J Colloid Interface Sci, 2014, 416: 198–204

    Article  CAS  Google Scholar 

  102. Babu R, Kathalikkattil AC, Roshan R, et al. Dual-porous metal organic framework for room temperature CO2 fixation via cyclic carbonate synthesis. Green Chem, 2016, 18: 232–242

    Article  Google Scholar 

  103. Kurisingal JF, Rachuri Y, Gu Y, et al. Fabrication of hierarchically porous MIL-88-NH2(Fe): a highly efficient catalyst for the chemical fixation of CO2 under ambient pressure. Inorg Chem Front, 2019, 6: 3613–3620

    Article  CAS  Google Scholar 

  104. Chang GG, Ma XC, Zhang YX, et al. Construction of hierarchical metal-organic frameworks by competitive coordination strategy for highly efficient CO2 conversion. Adv Mater, 2019, 31: 1904969

    Article  CAS  Google Scholar 

  105. Liang J, Chen RP, Wang XY, et al. Postsynthetic ionization of an imidazole-containing metal-organic framework for the cycloaddition of carbon dioxide and epoxides. Chem Sci, 2017, 8: 1570–1575

    Article  CAS  Google Scholar 

  106. Liang J, Xie YQ, Wang XS, et al. An imidazolium-functionalized mesoporous cationic metal-organic framework for cooperative CO2 fixation into cyclic carbonate. Chem Commun, 2018, 54: 342–345

    Article  CAS  Google Scholar 

  107. Aguila B, Sun Q, Wang X, et al. Lower activation energy for catalytic reactions through host-guest cooperation within metal-organic frameworks. Angew Chem Int Ed, 2018, 57: 10107–10111

    Article  CAS  Google Scholar 

  108. Han Q, Qi B, Ren W, et al. Polyoxometalate-based homochiral metal-organic frameworks for tandem asymmetric transformation of cyclic carbonates from olefins. Nat Commun, 2015, 6: 10007

    Article  Google Scholar 

  109. Ramidi P, Felton CM, Subedi BP, et al. Synthesis and characterization of manganese(III) and high-valent manganese-oxo complexes and their roles in conversion of alkenes to cyclic carbonates. J CO2 Utilization, 2015, 9: 48–57

    Article  CAS  Google Scholar 

  110. Zhou D, Wang L, Chen X, et al. Reaction mechanism investigation on the esterification of rosin with glycerol over annealed Fe3O4/MOF-5 via kinetics and TGA-FTIR analysis. Chem Eng J, 2020, 401: 126024

    Article  CAS  Google Scholar 

  111. Jiang J, Yaghi OM. Brønsted acidity in metal-organic frameworks. Chem Rev, 2015, 115: 6966–6997

    Article  CAS  Google Scholar 

  112. Juan-Alcaniz J, Ramos-Fernandez EV, Lafont U, et al. Building MOF bottles around phosphotungstic acid ships: One-pot synthesis of bifunctional polyoxometalate-MIL-101 catalysts. J Catal, 2010, 269: 229–241

    Article  CAS  Google Scholar 

  113. Yan L, Xu J, Duan T, et al. Phosphotungstic acid anchored on amine-functionalized MIL-101: An effective catalyst for the direct esterification of 1-butene to sec-butyl acetate. J Taiwan Institute Chem Engineers, 2019, 99: 201–206

    Article  CAS  Google Scholar 

  114. Dou Y, Zhang H, Zhou A, et al. Highly efficient catalytic esterification in an —SO3H-functionalized Cr(III)-MOF. Ind Eng Chem Res, 2018, 57: 8388–8395

    Article  CAS  Google Scholar 

  115. ≂l, Zang Y, Shi J, Zhang F, et al. Sulfonic acid-functionalized MIL-101 as a highly recyclable catalyst for esterification. Catal Sci Technol, 2013, 2044–20492

  116. Alavijeh MK, Amini MM. Synthesis and characterization of butylamine-functionalized Cr(III)-MOF-SO3H: Synergistic effect of the hydrophobic moiety on Cr(III)-MOF-SO3H in esterification reactions. Polyhedron, 2019, 173: 114142

    Article  Google Scholar 

  117. Garg B, Bisht T, Ling YC. Sulfonated graphene as highly efficient and reusable acid carbocatalyst for the synthesis of ester plasticizers. RSC Adv, 2014, 4: 57297–57307

    Article  CAS  Google Scholar 

  118. Peng Y, Jiang YY, Du XJ, et al. Co-Catalyzed decarbonylative alkylative esterification of styrenes with aliphatic aldehydes and hypervalent iodine(III) reagents. Org Chem Front, 2019, 6: 3065–3070

    Article  CAS  Google Scholar 

  119. Yan L, Duan T, Huang T, et al. Phosphotungstic acid immobilized on mixed-ligand-directed UiO-66 for the esterification of 1-butene with acetic acid to produce high-octane gasoline. Fuel, 2019, 245: 226–232

    Article  CAS  Google Scholar 

  120. Yuichi T. Method for producing lower alkyl acetate. Japan Patent, 1996, DE69117871, 1996-11-07

  121. Wee LH, Lescouet T, Ethiraj J, et al. Hierarchical zeolitic imidazolate framework-8 catalyst for monoglyceride synthesis. ChemCatChem, 2013, 5: 3562–3566

    Article  CAS  Google Scholar 

  122. Xu W, Thapa KB, Ju Q, et al. Heterogeneous catalysts based on me-soporous metal-organic frameworks. Coord Chem Rev, 2018, 373: 199–232

    Article  CAS  Google Scholar 

  123. Han XX, Chen KK, Yan W, et al. Amino acid-functionalized heteropolyacids as efficient and recyclable catalysts for esterification of palmitic acid to biodiesel. Fuel, 2016, 165: 115–122

    Article  CAS  Google Scholar 

  124. Liu X, Ma H, Wu Y, et al. Esterification of glycerol with acetic acid using double SO3H-functionalized ionic liquids as recoverable catalysts. Green Chem, 2011, 13: 697–701

    Article  CAS  Google Scholar 

  125. Jiang Y, Li X, Zhao H, et al. Esterification of glycerol with acetic acid over SO3H-functionalized phenolic resin. Fuel, 2019, 255: 115842

    Article  CAS  Google Scholar 

  126. Dong Z, Ren Z, Thompson SJ, et al. Transition-metal-catalyzed C-H alkylation using alkenes. Chem Rev, 2017, 117: 9333–9403

    Article  CAS  Google Scholar 

  127. Rahmani E, Rahmani M. Alkylation of benzene over Fe-based metal organic frameworks (MOFs) at low temperature condition. Microporous Mesoporous Mater, 2017, 249: 118–127

    Article  CAS  Google Scholar 

  128. Emana AN, Chand S. Alkylation of benzene with ethanol over modified HZSM-5 zeolite catalysts. Appl Petrochem Res, 2015, 5: 121–134

    Article  CAS  Google Scholar 

  129. Kovačič S, Mazaj M, Ješelnik M, et al. Synthesis and catalytic performance of hierarchically porous MIL-100(Fe)@polyhipe hybrid membranes. Macromol Rapid Commun, 2015, 36: 1605–1611

    Article  Google Scholar 

  130. Karimi Z, Morsali A. Modulated formation of metal-organic frameworks by oriented growth over mesoporous silica. J Mater Chem A, 2013, 1: 3047–3054

    Article  CAS  Google Scholar 

  131. Kou J, Sun LB. Fabrication of metal-organic frameworks inside silica nanopores with significantly enhanced hydrostability and catalytic activity. ACS Appl Mater Interfaces, 2018, 10: 12051–12059

    Article  CAS  Google Scholar 

  132. Perego C, Ingallina P. Recent advances in the industrial alkylation of aromatics: New catalysts and new processes. Catal Today, 2002, 73: -222

    Article  Google Scholar 

  133. Ezugwu CI, Mousavi B, Asraf MA, et al. Post-synthetic modified MOF for sonogashira cross-coupling and knoevenagel condensation reactions. J Catal, 2016, 344: 445–454

    Article  CAS  Google Scholar 

  134. Zhou A, Guo RM, Zhou J, et al. Pd@ZIF-67 derived recyclable Pd-based catalysts with hierarchical pores for high-performance heck reaction. ACS Sustain Chem Eng, 2018, 6: 2103–2111

    Article  CAS  Google Scholar 

  135. Zhang S, Liu Q, Shen M, et al. A facile route for preparing a mesoporous palladium coordination polymer as a recyclable heterogeneous catalyst. Dalton Trans, 2012, 41: 4692–4698

    Article  CAS  Google Scholar 

  136. Pascanu V, Yao Q, Bermejo Gómez A, et al. Sustainable catalysis: Rational Pd loading on MIL-101Cr-NH2 for more efficient and recyclable Suzuki-Miyaura reactions. Chem Eur J, 2013, 19: 17483–17493

    Article  CAS  Google Scholar 

  137. Carson F, Pascanu V, Bermejo Gómez A, et al. Influence of the base on Pd@MIL-101-NH2(Cr) as catalyst for the Suzuki-Miyaura cross-coupling reaction. Chem Eur J, 2015, 21: 10896–10902

    Article  CAS  Google Scholar 

  138. Pascanu V, Hansen PR, Bermejo Gómez A, et al. Highly functionalized biaryls via Suzuki-Miyaura cross-coupling catalyzed by Pd@MOF under batch and continuous flow regimes. ChemSusChem, 2015, 8: 123–130

    Article  CAS  Google Scholar 

  139. Mohadjer Beromi M, Nova A, Balcells D, et al. Mechanistic study of an improved Ni precatalyst for Suzuki-Miyaura reactions of arylsulfamates: Understanding the role of Ni(I) species. J Am Chem Soc, 2017, 139: 922–936

    Article  CAS  Google Scholar 

  140. Wood AB, Nandiwale KY, Mo Y, et al. Continuous flow Suzuki-Miyaura couplings in water under micellar conditions in a CSTR cascade catalyzed by Fe/ppm Pd nanoparticles. Green Chem, 2020, 22: 3441–3444

    Article  CAS  Google Scholar 

  141. He Z, Song F, Sun H, et al. Transition-metal-free Suzuki-type cross-coupling reaction of benzyl halides and boronic acids via 1,2-metalate shift. J Am Chem Soc, 2018, 140: 2693–2699

    Article  CAS  Google Scholar 

  142. Han X, Xu YX, Yang J, et al. Metal-assembled, resorcin[4]arene-based molecular trimer for efficient removal of toxic dichromate pollutants and knoevenagel condensation reaction. ACS Appl Mater Interfaces, 2019, 11: 15591–15597

    Article  CAS  Google Scholar 

  143. Otomo R, Osuga R, Kondo JN, et al. Cs-Beta with an Al-rich composition as a highly active base catalyst for knoevenagel condensation. Appl Catal A-Gen, 2019, 575: 20–24

    Article  CAS  Google Scholar 

  144. Hu Y, Zhang J, Huo H, et al. One-pot synthesis of bimetallic metal-organic frameworks (MOFs) as acid-base bifunctional catalysts for tandem reaction. Catal Sci Technol, 2020, 10: 315–322

    Article  CAS  Google Scholar 

  145. Fan W, Wang X, Xu B, et al. Amino-functionalized MOFs with high physicochemical stability for efficient gas storage/separation, dye adsorption and catalytic performance. J Mater Chem A, 2018, 6: 24486–24495

    Article  CAS  Google Scholar 

  146. Sun B, Zeng HC. A shell-by-shell approach for synthesis of mesoporous multi-shelled hollow MOFs for catalytic applications. Part Part Syst Charact, 2020, 37: 2000101

    Article  CAS  Google Scholar 

  147. Yousefian M, Rafiee Z. Cu-metal-organic framework supported on chitosan for efficient condensation of aromatic aldehydes and malononitrile. Carbohydrate Polyms, 2020, 228: 115393

    Article  Google Scholar 

  148. Bromberg L, Su X, Hatton TA. Heteropolyacid-functionalized aluminum 2-aminoterephthalate metal-organic frameworks as reactive aldehyde sorbents and catalysts. ACS Appl Mater Interfaces, 2013, 5: 5468–5477

    Article  CAS  Google Scholar 

  149. Isaeva VI, Chernyshev VV, Fomkin AA, et al. Preparation of novel hybrid catalyst with an hierarchical micro-/mesoporous structure by direct growth of the HKUST-1 nanoparticles inside mesoporous silica matrix (MMS). Microporous Mesoporous Mater, 2020, 300: 110136

    Article  CAS  Google Scholar 

  150. Zhang B, Bai X, Wang S, et al. Preparation of superhydrophobic metal-organic framework/polymer composites as stable and efficient catalysts. ACS Appl Mater Interfaces, 2021, 13: 32175–32183

    Article  CAS  Google Scholar 

  151. Sang X, Zhang J, Peng L, et al. Assembly of mesoporous metal-organic framework templated by an ionic liquid/ethylene glycol interface. ChemPhysChem, 2015, 16: 2317–2321

    Article  CAS  Google Scholar 

  152. Fazaeli R, Aliyan H, Moghadam M, et al. Nano-rod catalysts: Building MOF bottles (MIL-101 family as heterogeneous single-site catalysts) around vanadium oxide ships. J Mol Catal A-Chem, 2013, 374–375: 46–52

    Article  Google Scholar 

  153. Souto M, Santiago-Portillo A, Palomino M, et al. A highly stable and hierarchical tetrathiafulvalene-based metal-organic framework with improved performance as a solid catalyst. Chem Sci, 2018, 9: 2413–2418

    Article  CAS  Google Scholar 

  154. Gao Y, Liu Z, Hu G, et al. Design and synthesis heteropolyacid modified mesoporous hybrid material CNTs@MOF-199 catalyst by different methods for extraction-oxidation desulfurization of model diesel. Microporous Mesoporous Mater, 2020, 291: 109702

    Article  CAS  Google Scholar 

  155. McNamara ND, Hicks JC. Chelating agent-free, vapor-assisted crystallization method to synthesize hierarchical microporous/mesoporous MIL-125 (Ti). ACS Appl Mater Interfaces, 2015, 7: 5338–5346

    Article  CAS  Google Scholar 

  156. Khajavi H, Stil HA, Kuipers HPCE, et al. Shape and transition state selective hydrogenations using egg-shell Pt-MIL-101(Cr) catalyst. ACS Catal, 2013, 2617–26262

  157. Kim D, Kim DW, Buyukcakir O, et al. Highly hydrophobic ZIF-8/carbon nitride foam with hierarchical porosity for oil capture and chemical fixation of CO2. Adv Funct Mater, 2017, 27: 1700706

    Article  Google Scholar 

  158. Lyu J, Zhang X, Otake KI, et al. Topology and porosity control of metal-organic frameworks through linker functionalization. Chem Sci, 2019, 10: 1186–1192

    Article  CAS  Google Scholar 

  159. Meng W, Zeng Y, Liang Z, et al. Tuning expanded pores in metal-organic frameworks for selective capture and catalytic conversion of carbon dioxide. ChemSusChem, 2018, 11: 3751–3757

    Article  CAS  Google Scholar 

  160. Hassan HMA, Betiha MA, Mohamed SK, et al. Stable and recyclable MIL-101(Cr)-ionic liquid based hybrid nanomaterials as heterogeneous catalyst. J Mol Liquids, 2017, 236: 385–394

    Article  CAS  Google Scholar 

  161. Mitchell L, Williamson P, Ehrlichová B, et al. Mixed-metal MIL-100 (Sc,M) (M=Al, Cr, Fe) for Lewis acid catalysis and tandem C-C bond formation and alcohol oxidation. Chem Eur J, 2014, 20: 17185–17197

    Article  CAS  Google Scholar 

  162. Thallapally PK, Fernandez CA, Motkuri RK, et al. Micro and mesoporous metal-organic frameworks for catalysis applications. Dalton Trans, 2010, 39: 1692–1694

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22008032, 12105048, and 22078104), Guangdong Basic and Applied Basic Research Foundation (2019A1515110706 and 2020A1515110817), the Science and Technology Key Project of Guangdong Province, China (2020B010188002), the Special Innovation Projects of Universities in Guangdong Province (2018KTSCX240), the Innovation Team of Universities in Guangdong Province (2020KCXTD011), the Engineering Research Center of Universities in Guangdong Province (2019GCZX002), Guangdong Key Laboratory for Hydrogen Energy Technologies (2018B030322005), and Guangdong Provincial Key Lab of Green Chemical Product Technology (GC202111).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Duan C, Yu Y, and Xi H conceived the original idea. Yu Y, Duan C, Liang K, Lin J, Kang L, Li J, Li L, and Xi H drafted the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Yi Yu  (余仪) or Hongxia Xi  (奚红霞).

Ethics declarations

Conflict of interest The authors declare no competing financial interest.

Additional information

Chongxiong Duan received his PhD degree in chemical engineering from South China University of Technology in 2019. He is currently an associate professor at the School of Materials Science and Hydrogen Engineering, Foshan University. His research interests focus on the development of porous materials (MOFs, porous carbon, zeolites) and their application.

Yi Yu was born in 1996, Guangdong Province, China. She is studying at the School of Chemistry and Chemical Engineering, South China University of Technology in Guangzhou, China. She is now doing her research under the guidance of Prof. Hongxia Xi. Her current research is mainly focused on the synthesis of porous functional organic materials and their application in gas adsorption and heterogeneous catalysis.

Hongxia Xi received her PhD degree in chemical engineering from South China University of Technology in 1996. She then worked as a post-doctor for two years at Sun Yat-sen Unviersity, as a visiting scholar for one year at Savoie University, France, and as a senior visiting scholar for six months at The State University of New Jersey, USA. She is currently a professor of chemical engineering at South China University of Technology. Her research interests focus on the development of porous materials and their application.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, C., Liang, K., Lin, J. et al. Application of hierarchically porous metal-organic frameworks in heterogeneous catalysis: A review. Sci. China Mater. 65, 298–320 (2022). https://doi.org/10.1007/s40843-021-1910-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-021-1910-2

Keywords

Navigation