Skip to main content
Log in

Recent advances on crystalline materials-based flexible memristors for data storage and neuromorphic applications

基于结晶材料的柔性忆阻器的研究进展

  • Reviews
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Memristors have recently emerged as promising contenders for in-memory computing and artificial neural networks, attributed to their analogies to biological synapses and neurons in structural and electrical behaviors. From the diversity level, a variety of materials have been demonstrated to have great potential for memristor applications. Herein, we focus on one class of crystalline materials (CMs)-based flexible memristors with state-of-the-art experimental demonstrations. Firstly, the typical device structure and switching mechanisms are introduced. Secondly, the recent advances on CMs-based flexible memristors, including 2D materials, metal-organic frameworks, covalent organic frameworks, and perovskites, as well as their applications for data storage and neuromorphic devices are comprehensively summarized. Finally, the future challenges and perspectives of CMs-based flexible memristors are presented.

摘要

忆阻器因其结构独特以及电学行为能够模拟生物突触, 近年来在存算一体化和人工神经网络领域显现出广阔的应用前景. 从材料多样性的角度而言, 目前已有诸多材料显示出应用于忆阻器的巨大潜力. 在本文中, 我们关注一类基于结晶材料的柔性忆阻器. 首先介绍了典型的忆阻器件结构与开关机制, 其次重点综述了基于结晶材料的柔性忆阻器及其在数据存储和神经形态计算领域的应用, 包括二维材料、 金属有机框架材料、 共价有机框架材料和钙钛矿材料. 最后, 对当前基于结晶材料的柔性忆阻器的发展前景进行了展望.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chua L. Memristor—The missing circuit element. IEEE Trans Circuit Theor, 1971, 18: 507–519

    Article  Google Scholar 

  2. Strukov DB, Snider GS, Stewart DR, et al. The missing memristor found. Nature, 2008, 453: 80–83

    Article  CAS  Google Scholar 

  3. Hus SM, Ge R, Chen PA, et al. Observation of single-defect memristor in an MoS2 atomic sheet. Nat Nanotechnol, 2021, 16: 58–62

    Article  CAS  Google Scholar 

  4. Sun B, Zhou G, Guo T, et al. Biomemristors as the next generation bioelectronics. Nano Energy, 2020, 75: 104938

    Article  CAS  Google Scholar 

  5. Wang TY, Meng JL, Rao MY, et al. Three-dimensional nanoscale flexible memristor networks with ultralow power for information transmission and processing application. Nano Lett, 2020, 20: 4111–4120

    Article  CAS  Google Scholar 

  6. Wang TY, Meng JL, Chen L, et al. Flexible 3D memristor array for binary storage and multi-states neuromorphic computing applications. InfoMat, 2021, 3: 212–221

    Article  Google Scholar 

  7. Chen F, Zhou Y, Zhu Y, et al. Recent progress in artificial synaptic devices: Materials, processing and applications. J Mater Chem C, 2021, 9: 8372–8394

    Article  Google Scholar 

  8. Wang M, Cai S, Pan C, et al. Robust memristors based on layered two-dimensional materials. Nat Electron, 2018, 1: 130–136

    Article  CAS  Google Scholar 

  9. Goswami S, Matula AJ, Rath SP, et al. Robust resistive memory devices using solution-processable metal-coordinated azo aromatics. Nat Mater, 2017, 16: 1216–1224

    Article  CAS  Google Scholar 

  10. Zhang Z, Wang Z, Shi T, et al. Memory materials and devices: From concept to application. InfoMat, 2020, 2: 261–290

    Article  CAS  Google Scholar 

  11. Chen Y, Liu G, Wang C, et al. Polymer memristor for information storage and neuromorphic applications. Mater Horiz, 2014, 1: 489

    Article  CAS  Google Scholar 

  12. Zhang B, Chen W, Zeng J, et al. 90% yield production of polymer nano-memristor for in-memory computing. Nat Commun, 2021, 12: 1984

    Article  CAS  Google Scholar 

  13. Sun K, Chen J, Yan X. The future of memristors: Materials engineering and neural networks. Adv Funct Mater, 2020, 31: 2006773

    Article  CAS  Google Scholar 

  14. Zhong Y, Tang J, Li X, et al. Dynamic memristor-based reservoir computing for high-efficiency temporal signal processing. Nat Commun, 2021, 12: 408

    Article  CAS  Google Scholar 

  15. Yao P, Wu H, Gao B, et al. Fully hardware-implemented memristor convolutional neural network. Nature, 2020, 577: 641–646

    Article  CAS  Google Scholar 

  16. Huang HM, Wang Z, Wang T, et al. Artificial neural networks based on memristive devices: From device to system. Adv Intelligent Syst, 2020, 2: 2000149

    Article  Google Scholar 

  17. Wang Z, Joshi S, Savel’ev SE, et al. Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nat Mater, 2017, 16: 101–108

    Article  CAS  Google Scholar 

  18. Prezioso M, Merrikh-Bayat F, Hoskins BD, et al. Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature, 2015, 521: 61–64

    Article  CAS  Google Scholar 

  19. Kang DH, Kim JH, Oh S, et al. A neuromorphic device implemented on a salmon-DNA electrolyte and its application to artificial neural networks. Adv Sci, 2019, 6: 1901265

    Article  CAS  Google Scholar 

  20. Choi S, Yang J, Wang G. Emerging memristive artificial synapses and neurons for energy-efficient neuromorphic computing. Adv Mater, 2020, 32: 2004659

    Article  CAS  Google Scholar 

  21. Sun F, Lu Q, Feng S, et al. Flexible artificial sensory systems based on neuromorphic devices. ACS Nano, 2021, 15: 3875–3899

    Article  CAS  Google Scholar 

  22. Huang L, Diao J, Nie H, et al. Memristor based binary convolutional neural network architecture with configurable neurons. Front Neurosci, 2021, 15: 639526

    Article  Google Scholar 

  23. Zhu K, Liang X, Yuan B, et al. Graphene-boron nitride-graphene cross-point memristors with three stable resistive states. ACS Appl Mater Interfaces, 2019, 11: 37999–38005

    Article  CAS  Google Scholar 

  24. Li Y, Zhang C, Ling S, et al. Toward highly robust nonvolatile multilevel memory by fine tuning of the nanostructural crystalline solid-state order. Small, 2021, 17: 2100102

    Article  CAS  Google Scholar 

  25. Fang Y, Zhai S, Chu L, et al. Advances in halide perovskite memristor from lead-based to lead-free materials. ACS Appl Mater Interfaces, 2021, 13: 17141–17157

    Article  CAS  Google Scholar 

  26. Zhang L, Gong T, Wang H, et al. Memristive devices based on emerging two-dimensional materials beyond graphene. Nanoscale, 2019, 11: 12413–12435

    Article  CAS  Google Scholar 

  27. Yu T, He F, Zhao J, et al. Hf0.5Zr0.5O2-based ferroelectric memristor with multilevel storage potential and artificial synaptic plasticity. Sci China Mater, 2020, 64: 727–738

    Article  CAS  Google Scholar 

  28. Yao Z, Pan L, Liu L, et al. Simultaneous implementation of resistive switching and rectifying effects in a metal-organic framework with switched hydrogen bond pathway. Sci Adv, 2019, 5: eaaw4515

    Article  CAS  Google Scholar 

  29. Zhou G, Sun B, Hu X, et al. Negative photoconductance effect: An extension function of the TiOx-based memristor. Adv Sci, 2021, 8: 2003765

    Article  CAS  Google Scholar 

  30. Li Y, Qian Q, Zhu X, et al. Recent advances in organic-based materials for resistive memory applications. InfoMat, 2020, 2: 995–1033

    Article  CAS  Google Scholar 

  31. Zhou G, Ren Z, Wang L, et al. Artificial and wearable albumen protein memristor arrays with integrated memory logic gate functionality. Mater Horiz, 2019, 6: 1877–1882

    Article  CAS  Google Scholar 

  32. Zhang B, Fan F, Xue W, et al. Redox gated polymer memristive processing memory unit. Nat Commun, 2019, 10: 736

    Article  CAS  Google Scholar 

  33. Zhao YY, Sun WJ, Wang J, et al. All-inorganic ionic polymer-based memristor for high-performance and flexible artificial synapse. Adv Funct Mater, 2020, 30: 2004245

    Article  CAS  Google Scholar 

  34. Lan J, Cao G, Wang J, et al. Artificial nociceptor based on TiO2 nanosheet memristor. Sci China Mater, 2021, 64: 1703–1712

    Article  CAS  Google Scholar 

  35. Sivan M, Li Y, Veluri H, et al. All WSe2 1T1R resistive ram cell for future monolithic 3D embedded memory integration. Nat Commun, 2019, 10: 5201

    Article  CAS  Google Scholar 

  36. Chen T, Yang S, Wang J, et al. Flexible artificial memristive synapse constructed from solution-processed MgO-graphene oxide quantum dot hybrid films. Adv Electron Mater, 2021, 7: 2000882

    Article  CAS  Google Scholar 

  37. Zhou Z, Xiu F, Jiang T, et al. Solution-processable zinc oxide nanorods and a reduced graphene oxide hybrid nanostructure for highly flexible and stable memristor. J Mater Chem C, 2019, 7: 10764–10768

    Article  CAS  Google Scholar 

  38. Zhao X, Xu H, Wang Z, et al. Memristors with organic-inorganic halide perovskites. InfoMat, 2019, 1: inf2.12012

    Article  CAS  Google Scholar 

  39. Wang Y, Sun L, Wang C, et al. Organic crystalline materials in flexible electronics. Chem Soc Rev, 2019, 48: 1492–1530

    Article  CAS  Google Scholar 

  40. Ma Y, Zhang Y, Cai S, et al. Flexible hybrid electronics for digital healthcare. Adv Mater, 2020, 32: 1902062

    Article  CAS  Google Scholar 

  41. Zhou L, Mao J, Ren Y, et al. Recent advances of flexible data storage devices based on organic nanoscaled materials. Small, 2018, 14: 1703126

    Article  CAS  Google Scholar 

  42. Kang K, Ahn H, Song Y, et al. High-performance solution-processed organo-metal halide perovskite unipolar resistive memory devices in a cross-bar array structure. Adv Mater, 2019, 31: 1804841

    Article  CAS  Google Scholar 

  43. Son D, Chae SI, Kim M, et al. Colloidal synthesis of uniform-sized molybdenum disulfide nanosheets for wafer-scale flexible nonvolatile memory. Adv Mater, 2016, 28: 9326–9332

    Article  CAS  Google Scholar 

  44. Qian Y, Zhang X, Xie L, et al. Stretchable organic semiconductor devices. Adv Mater, 2016, 28: 9243–9265

    Article  CAS  Google Scholar 

  45. Jeong HY, Kim JY, Kim JW, et al. Graphene oxide thin films for flexible nonvolatile memory applications. Nano Lett, 2010, 10: 4381–4386

    Article  CAS  Google Scholar 

  46. Liu Y, Wang H, Shi W, et al. Alcohol-mediated resistance-switching behavior in metal-organic framework-based electronic devices. Angew Chem Int Ed, 2016, 55: 8884–8888

    Article  CAS  Google Scholar 

  47. Park SW, Liao Z, Ibarlucea B, et al. Two-dimensional boronate ester covalent organic framework thin films with large single crystalline domains for a neuromorphic memory device. Angew Chem Int Ed, 2020, 59: 8218–8224

    Article  CAS  Google Scholar 

  48. Gu C, Lee JS. Flexible hybrid organic-inorganic perovskite memory. ACS Nano, 2016, 10: 5413–5418

    Article  CAS  Google Scholar 

  49. Linn E, Rosezin R, Kügeler C, et al. Complementary resistive switches for passive nanocrossbar memories. Nat Mater, 2010, 9: 403–406

    Article  CAS  Google Scholar 

  50. Vu QA, Kim H, Nguyen VL, et al. A high-on/off-ratio floating-gate memristor array on a flexible substrate via CVD-grown large-area 2D layer stacking. Adv Mater, 2017, 29: 1703363

    Article  CAS  Google Scholar 

  51. Sun L, Zhang Y, Han G, et al. Self-selective van der Waals heterostructures for large scale memory array. Nat Commun, 2019, 10: 3161

    Article  CAS  Google Scholar 

  52. Zhang J, Yang T, Wang J, et al. Memristive device with highly continuous conduction modulation and its underlying physical mechanism for electronic synapse application. Sci China Mater, 2021, 64: 179–188

    Article  CAS  Google Scholar 

  53. Rani A, Kim DH. A mechanistic study on graphene-based nonvolatile ReRAM devices. J Mater Chem C, 2016, 4: 11007–11031

    Article  CAS  Google Scholar 

  54. Gabel M, Gu Y. Understanding microscopic operating mechanisms of a van der Waals planar ferroelectric memristor. Adv Funct Mater, 2020, 31: 2009999

    Article  CAS  Google Scholar 

  55. Chen K, Tsutsui M, Zhuge F, et al. Nanochannel-based interfacial memristor: Electrokinetic analysis of the frequency characteristics. Adv Electron Mater, 2021, 7: 2000848

    Article  CAS  Google Scholar 

  56. Sokolov AS, Ali M, Riaz R, et al. Silver-adapted diffusive memristor based on organic nitrogen-doped graphene oxide quantum dots (N-GOQDs) for artificial biosynapse applications. Adv Funct Mater, 2019, 29: 1807504

    Article  CAS  Google Scholar 

  57. Lee SM, Choi J, Jeon JB, et al. Conducting bridge resistive switching behaviors in cubic MAPbI3, orthorhombic RbPbI3, and their mixtures. Adv Electron Mater, 2019, 5: 1800586

    Article  CAS  Google Scholar 

  58. Ye H, Sun B, Wang Z, et al. High performance flexible memristors based on a lead free AgBiI4 perovskite with an ultralow operating voltage. J Mater Chem C, 2020, 8: 14155–14163

    Article  CAS  Google Scholar 

  59. Jo SH, Chang T, Ebong I, et al. Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett, 2010, 10: 1297–1301

    Article  CAS  Google Scholar 

  60. Di Martino G, Demetriadou A, Li W, et al. Real-time in situ optical tracking of oxygen vacancy migration in memristors. Nat Electron, 2020, 3: 687–693

    Article  CAS  Google Scholar 

  61. Xu W, Cho H, Kim YH, et al. Organometal halide perovskite artificial synapses. Adv Mater, 2016, 28: 5916–5922

    Article  CAS  Google Scholar 

  62. Solanki A, Guerrero A, Zhang Q, et al. Interfacial mechanism for efficient resistive switching in Ruddlesden-Popper perovskites for non-volatile memories. J Phys Chem Lett, 2019, 11: 463–470

    Article  CAS  Google Scholar 

  63. Zhou F, Liu Y, Shen X, et al. Low-voltage, optoelectronic CH3NH3PbI3−xClx memory with integrated sensing and logic operations. Adv Funct Mater, 2018, 28: 1800080

    Article  CAS  Google Scholar 

  64. Wang H, Yu T, Zhao J, et al. Low-power memristors based on layered 2D SnSe/graphene materials. Sci China Mater, 2021, 64: 1989–1996

    Article  CAS  Google Scholar 

  65. Xiong W, Zhu LQ, Ye C, et al. Flexible poly(vinyl alcohol)-graphene oxide hybrid nanocomposite based cognitive memristor with Pavlovian-conditioned reflex activities. Adv Electron Mater, 2020, 6: 1901402

    Article  CAS  Google Scholar 

  66. Chen Y, Gao G, Zhao J, et al. Piezotronic graphene artificial sensory synapse. Adv Funct Mater, 2019, 29: 1900959

    Article  CAS  Google Scholar 

  67. Bertolazzi S, Bondavalli P, Roche S, et al. Nonvolatile memories based on graphene and related 2D materials. Adv Mater, 2019, 31: 1806663

    Article  CAS  Google Scholar 

  68. Tan C, Liu Z, Huang W, et al. Non-volatile resistive memory devices based on solution-processed ultrathin two-dimensional nanomaterials. Chem Soc Rev, 2015, 44: 2615–2628

    Article  CAS  Google Scholar 

  69. Huh W, Lee D, Lee CH. Memristors based on 2D materials as an artificial synapse for neuromorphic electronics. Adv Mater, 2020, 32: 2002092

    Article  CAS  Google Scholar 

  70. Khot AC, Dongale TD, Park JH, et al. Ti3C2-based MXene oxide nanosheets for resistive memory and synaptic learning applications. ACS Appl Mater Interfaces, 2021, 13: 5216–5227

    Article  CAS  Google Scholar 

  71. Cao Y, Tian X, Gu J, et al. Covalent functionalization of black phosphorus with conjugated polymer for information storage. Angew Chem Int Ed, 2018, 57: 4543–4548

    Article  CAS  Google Scholar 

  72. Zhang X, Xie H, Liu Z, et al. Black phosphorus quantum dots. Angew Chem Int Ed, 2015, 54: 3653–3657

    Article  CAS  Google Scholar 

  73. Liu T, Wu W, Liao KN, et al. Fabrication of carboxymethyl cellulose and graphene oxide bio-nanocomposites for flexible nonvolatile resistive switching memory devices. Carbohydrate Polyms, 2019, 214: 213–220

    Article  CAS  Google Scholar 

  74. Zhao X, Wang Z, Xie Y, et al. Photocatalytic reduction of graphene oxide-TiO2 nanocomposites for improving resistive-switching memory behaviors. Small, 2018, 14: 1801325

    Article  CAS  Google Scholar 

  75. Liu J, Yin Z, Cao X, et al. Fabrication of flexible, all-reduced graphene oxide non-volatile memory devices. Adv Mater, 2013, 25: 233–238

    Article  CAS  Google Scholar 

  76. Schranghamer TF, Oberoi A, Das S. Graphene memristive synapses for high precision neuromorphic computing. Nat Commun, 2020, 11: 5474

    Article  CAS  Google Scholar 

  77. Tian H, Deng B, Chin ML, et al. A dynamically reconfigurable ambipolar black phosphorus memory device. ACS Nano, 2016, 10: 10428–10435

    Article  CAS  Google Scholar 

  78. Xiang D, Liu T, Xu J, et al. Two-dimensional multibit optoelectronic memory with broadband spectrum distinction. Nat Commun, 2018, 9: 2966

    Article  CAS  Google Scholar 

  79. Wu X, Ge R, Chen PA, et al. Thinnest nonvolatile memory based on monolayer h-BN. Adv Mater, 2019, 31: 1806790

    Article  CAS  Google Scholar 

  80. Wang Y, Gong Y, Yang L, et al. MXene-ZnO memristor for multi-modal in-sensor computing. Adv Funct Mater, 2021, 31: 2100144

    Article  CAS  Google Scholar 

  81. Wang K, Chen J, Yan X. MXene Ti3C2 memristor for neuromorphic behavior and decimal arithmetic operation applications. Nano Energy, 2021, 79: 105453

    Article  CAS  Google Scholar 

  82. Shahzad F, Iqbal A, Kim H, et al. 2D transition metal carbides (MXenes): Applications as an electrically conducting material. Adv Mater, 2020, 32: 2002159

    Article  CAS  Google Scholar 

  83. Han M, Shuck CE, Rakhmanov R, et al. Beyond Ti3C2Tx: MXenes for electromagnetic interference shielding. ACS Nano, 2020, 14: 5008–5016

    Article  CAS  Google Scholar 

  84. Kim H, Wang Z, Alshareef HN. Mxetronics: Electronic and photonic applications of Mxenes. Nano Energy, 2019, 60: 179–197

    Article  CAS  Google Scholar 

  85. Kamysbayev V, Filatov AS, Hu H, et al. Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes. Science, 2020, 369: 979–983

    Article  CAS  Google Scholar 

  86. Sun WJ, Zhao YY, Cheng XF, et al. Surface functionalization of single-layered Ti3C2Tx MXene and its application in multilevel resistive memory. ACS Appl Mater Interfaces, 2020, 12: 9865–9871

    Article  CAS  Google Scholar 

  87. Li C, Wang K, Li J, et al. Recent progress in stimulus-responsive two-dimensional metal-organic frameworks. ACS Mater Lett, 2020, 2: 779–797

    Article  CAS  Google Scholar 

  88. Gao J, He M, Lee ZY, et al. A surfactant-thermal method to prepare four new three-dimensional heterometal-organic frameworks. Dalton Trans, 2013, 42: 11367–11370

    Article  CAS  Google Scholar 

  89. Zhang X, Wan K, Subramanian P, et al. Electrochemical deposition of metal-organic framework films and their applications. J Mater Chem A, 2020, 8: 7569–7587

    Article  CAS  Google Scholar 

  90. Wu Z, Adekoya D, Huang X, et al. Highly conductive two-dimensional metal-organic frameworks for resilient lithium storage with superb rate capability. ACS Nano, 2020, 14: 12016–12026

    Article  CAS  Google Scholar 

  91. Yan Y, Li C, Wu Y, et al. From isolated Ti-oxo clusters to infinite Ti-oxo chains and sheets: Recent advances in photoactive Ti-based MOFs. J Mater Chem A, 2020, 8: 15245–15270

    Article  CAS  Google Scholar 

  92. Li C, Wang K, Li J, et al. Nanostructured potassium-organic framework as an effective anode for potassium-ion batteries with a long cycle life. Nanoscale, 2020, 12: 7870–7874

    Article  CAS  Google Scholar 

  93. Yi X, Yu Z, Niu X, et al. Intrinsically stretchable resistive switching memory enabled by combining a liquid metal-based soft electrode and a metal-organic framework insulator. Adv Electron Mater, 2019, 5: 1800655

    Article  CAS  Google Scholar 

  94. Ding G, Wang Y, Zhang G, et al. 2D metal-organic framework nanosheets with time-dependent and multilevel memristive switching. Adv Funct Mater, 2019, 29: 1806637

    Article  CAS  Google Scholar 

  95. Rana S, Prasoon A, Jha PK, et al. Thermally driven resistive switching in solution-processable thin films of coordination polymers. J Phys Chem Lett, 2017, 8: 5008–5014

    Article  CAS  Google Scholar 

  96. Park MJ, Lee JS. Zeolitic-imidazole framework thin film-based flexible resistive switching memory. RSC Adv, 2017, 7: 21045–21049

    Article  CAS  Google Scholar 

  97. Wang Z, Nminibapiel D, Shrestha P, et al. Resistive switching nano-devices based on metal-organic frameworks. ChemNanoMat, 2016, 2: 67–73

    Article  CAS  Google Scholar 

  98. Pan L, Ji Z, Yi X, et al. Metal-organic framework nanofilm for mechanically flexible information storage applications. Adv Funct Mater, 2015, 25: 2677–2685

    Article  CAS  Google Scholar 

  99. Yoon SM, Warren SC, Grzybowski BA. Storage of electrical information in metal-organic-framework memristors. Angew Chem Int Ed, 2014, 53: 4437–4441

    Article  CAS  Google Scholar 

  100. Huang X, Zheng B, Liu Z, et al. Coating two-dimensional nano-materials with metal-organic frameworks. ACS Nano, 2014, 8: 8695–8701

    Article  CAS  Google Scholar 

  101. Bian G, Yin J, Zhu J. Recent advances on conductive 2D covalent organic frameworks. Small, 2021, 17: 2006043

    Article  CAS  Google Scholar 

  102. Zhang C, Li Y, Li H, et al. Overview of electric-field-induced deposition technology in fabricating organic thin films. J Mater Chem C, 2021, 9: 374–394

    Article  CAS  Google Scholar 

  103. Furukawa H, Cordova KE, O’Keeffe M, et al. The chemistry and applications of metal-organic frameworks. Science, 2013, 341: 1230444

    Article  CAS  Google Scholar 

  104. Xu S, Zhang Q. Recent progress in covalent organic frameworks as light-emitting materials. Mater Today Energy, 2021, 20: 100635

    Article  CAS  Google Scholar 

  105. Zhi Y, Wang Z, Zhang HL, et al. Recent progress in metal-free covalent organic frameworks as heterogeneous catalysts. Small, 2020, 16: 2001070

    Article  CAS  Google Scholar 

  106. Yu F, Liu W, Ke SW, et al. Electrochromic two-dimensional covalent organic framework with a reversible dark-to-transparent switch. Nat Commun, 2020, 11: 5534

    Article  CAS  Google Scholar 

  107. Yao CJ, Wu Z, Xie J, et al. Two-dimensional (2D) covalent organic framework as efficient cathode for binder-free lithium-ion battery. ChemSusChem, 2020, 13: 2457–2463

    Article  CAS  Google Scholar 

  108. Sun B, Li X, Feng T, et al. Resistive switching memory performance of two-dimensional polyimide covalent organic framework films. ACS Appl Mater Interfaces, 2020, 12: 51837–51845

    Article  CAS  Google Scholar 

  109. Liu J, Yang F, Cao L, et al. A robust nonvolatile resistive memory device based on a freestanding ultrathin 2D imine polymer film. Adv Mater, 2019, 31: 1902264

    Article  CAS  Google Scholar 

  110. Wang R, Mujahid M, Duan Y, et al. A review of perovskites solar cell stability. Adv Funct Mater, 2019, 29: 1808843

    Article  CAS  Google Scholar 

  111. Wang N, Liu W, Zhang Q. Perovskite-based nanocrystals: Synthesis and applications beyond solar cells. Small Methods, 2018, 2: 1700380

    Article  CAS  Google Scholar 

  112. Sun J, Wu J, Tong X, et al. Organic/inorganic metal halide perovskite optoelectronic devices beyond solar cells. Adv Sci, 2018, 5: 1700780

    Article  CAS  Google Scholar 

  113. Said AA, Xie J, Zhang Q. Recent progress in organic electron transport materials in inverted perovskite solar cells. Small, 2019, 15: 1900854

    Article  CAS  Google Scholar 

  114. Gu PY, Wang N, Wang C, et al. Pushing up the efficiency of planar perovskite solar cells to 18.2% with organic small molecules as the electron transport layer. J Mater Chem A, 2017, 5: 7339–7344

    Article  CAS  Google Scholar 

  115. Gu PY, Wang N, Wu A, et al. An azaacene derivative as promising electron-transport layer for inverted perovskite solar cells. Chem Asian J, 2016, 11: 2135–2138

    Article  CAS  Google Scholar 

  116. Yang JM, Choi ES, Kim SY, et al. Perovskite-related (CH3NH3)3Sb2Br9 for forming-free memristor and low-energy-consuming neuromorphic computing. Nanoscale, 2019, 11: 6453–6461

    Article  CAS  Google Scholar 

  117. Qian WH, Cheng XF, Zhou J, et al. Lead-free perovskite MASnBr3-based memristor for quaternary information storage. InfoMat, 2019, 2: 743–751

    Article  CAS  Google Scholar 

  118. Li B, Hui W, Ran X, et al. Metal halide perovskites for resistive switching memory devices and artificial synapses. J Mater Chem C, 2019, 7: 7476–7493

    Article  CAS  Google Scholar 

  119. Huang Y, Zhao Z, Wang C, et al. Conductive metallic filaments dominate in hybrid perovskite-based memory devices. Sci China Mater, 2019, 62: 1323–1331

    Article  CAS  Google Scholar 

  120. Yoo EJ, Lyu M, Yun JH, et al. Resistive switching behavior in organic-inorganic hybrid CH3NH3PbI3−xClx perovskite for resistive random access memory devices. Adv Mater, 2015, 27: 6170–6175

    Article  CAS  Google Scholar 

  121. Choi J, Park S, Lee J, et al. Organolead halide perovskites for low operating voltage multilevel resistive switching. Adv Mater, 2016, 28: 6562–6567

    Article  CAS  Google Scholar 

  122. Hu Y, Zhang S, Miao X, et al. Ultrathin Cs3Bi2I9 nanosheets as an electronic memory material for flexible memristors. Adv Mater Interfaces, 2017, 4: 1700131

    Article  CAS  Google Scholar 

  123. Cheng XF, Hou X, Zhou J, et al. Pseudohalide-induced 2D (CH3NH3)2PbI2(SCN)2 perovskite for ternary resistive memory with high performance. Small, 2018, 14: 1703667

    Article  CAS  Google Scholar 

  124. Yang L, Singh M, Shen S-W, et al. Transparent and flexible inorganic perovskite photonic artificial synapses with dual-mode operation. Adv Funct Mater, 2020, 31: 2008259

    Article  CAS  Google Scholar 

  125. Kim H, Han JS, Kim SG, et al. Halide perovskites for resistive random-access memories. J Mater Chem C, 2019, 7: 5226–5234

    Article  CAS  Google Scholar 

  126. Choi J, Le QV, Hong K, et al. Enhanced endurance organolead halide perovskite resistive switching memories operable under an extremely low bending radius. ACS Appl Mater Interfaces, 2017, 9: 30764–30771

    Article  CAS  Google Scholar 

  127. Yan K, Chen B, Hu H, et al. First fiber-shaped non-volatile memory device based on hybrid organic-inorganic perovskite. Adv Electron Mater, 2016, 2: 1600160

    Article  CAS  Google Scholar 

  128. Paul T, Sarkar PK, Maiti S, et al. Multilevel programming and light-assisted resistive switching in a halide-tunable all-inorganic perovskite cube for flexible memory devices. ACS Appl Electron Mater, 2020, 2: 3667–3677

    Article  CAS  Google Scholar 

  129. Das U, Nyayban A, Paul B, et al. Compliance current-dependent dual-functional bipolar and threshold resistive switching in all-inorganic rubidium lead-bromide perovskite-based flexible device. ACS Appl Electron Mater, 2020, 2: 1343–1351

    Article  CAS  Google Scholar 

  130. Lin Q, Hu W, Zang Z, et al. Transient resistive switching memory of CsPbBr3 thin films. Adv Electron Mater, 2018, 4: 1700596

    Article  CAS  Google Scholar 

  131. Han JS, Le QV, Choi J, et al. Air-stable cesium lead iodide perovskite for ultra-low operating voltage resistive switching. Adv Funct Mater, 2018, 28: 1705783

    Article  CAS  Google Scholar 

  132. Kim SG, Han JS, Kim H, et al. Recent advances in memristive materials for artificial synapses. Adv Mater Technol, 2018, 3: 1800457

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Zhang Q acknowledges the support from the starting funding of City University of Hong Kong (9380117) and the 111 Project (D20015). Li Y thanks the financial support from the National Natural Science Foundation of China (22008164), the Natural Science Foundation of Jiangsu Province (BK20190939), and the Natural Science Foundation of Jiangsu Higher Education Institutions of China (19KJB150018). This work was also supported by the Natural Science Foundation of Jiangsu Higher Education Institutions (18KJA470004), the Six Talent Peaks Project of Jiangsu Province, China (XCL-078), and Suzhou Key Laboratory for Low Dimensional Optoelectronic Materials and Devices (SZS201611).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Li Y and Zhang C wrote and revised the manuscript with support from Ma C and Zhang Q; Shi Z and Wang J polished the manuscript and organized the references. All authors contributed to the general discussion.

Corresponding authors

Correspondence to Yang Li  (李阳), Chunlan Ma  (马春兰) or Qichun Zhang  (张其春).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Yang Li is currently an associate professor at the School of Physical Science and Technology, Suzhou University of Science and Technology. He received his BS and PhD degrees from Soochow University. From 2016 to 2017, he studied at Prof. Qichun Zhang’s group as a joint PhD student. His research interests focus on the preparation of novel memristive materials and devices, and their applications for data storage and neuromorphic computing.

Cheng Zhang is currently a research fellow at the School of Physical Science and Technology, Suzhou University of Science and Technology. From 2019 to 2020, he studied at Prof. Qichun Zhang’s group as a joint PhD student. His research interests involve the synthesis and application of organic semiconductor materials, particularly, organic resistive memory devices.

Chunlan Ma is a professor and the dean of the School of Physical Science and Technology, Suzhou University of Science and Technology. Her research interests include electronic structure, band structure investigation and the design of novel optoelectronic materials and devices using first-principles calculations.

Qichun Zhang is a professor at the Department of Materials Science and Engineering, City University of Hong Kong. Before he moved to Hong Kong, he was an associate professor with tenure at the School of Materials Science and Engineering, Nanyang Technological University of Singapore. He is currently a fellow of the Royal Society of Chemistry. His research interests include carbon-rich conjugated materials and their applications for optoelectronic and semiconductor devices.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Zhang, C., Shi, Z. et al. Recent advances on crystalline materials-based flexible memristors for data storage and neuromorphic applications. Sci. China Mater. 65, 2110–2127 (2022). https://doi.org/10.1007/s40843-021-1771-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-021-1771-5

Keywords

Navigation