Skip to main content
Log in

Synergistically electronic tuning of metalloid CdSe nanorods for enhanced electrochemical CO2 reduction

协同电子调控增强类金属特性CdSe纳米棒的电催化CO2还原性能

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Engineering the electronic properties of catalysts to target intermediate adsorption energy as well as harvest high selectivity represents a promising strategy to design advanced electrocatalysts for efficient CO2 electroreduction. Herein, a synergistically tuning on the electronic structure of the CdSe nanorods is proposed for boosting electrochemical reduction of CO2. The synergy of Ag doping coupled with Se vacancies tuned the electronic structure of the CdSe nanorods, which shows the metalloid characterization and thereby the accelerated electron transfer of CO2 electroreduction. Operando synchrotron radiation Fourier transform infrared spectroscopy and theoretical simulation revealed that the Ag doping and Se vacancies accelerated the CO2 activation process and lowered the energy barrier for the conversion from CO2 to *COOH; as a result, the performance of CO2 electroreduction was enhanced. The as-obtained metalloid Ag-doped CdSe nanorods exhibited a 2.7-fold increment in current density and 1.9-fold Faradaic efficiency of CO than pristine CdSe nanorod.

摘要

通过定制催化剂的电子特性以达到合适的中间体吸附能, 从而获得高选择性, 是一种可用于设计先进的CO2电还原催化剂的有前景的策略, 在本文中, 我们报道了一种通过协同调控CdSe纳米棒的电子结构以促进电化学CO2还原的方法. 银掺杂与硒空位协同调控了CdSe纳米棒的电子结构, 导致该结构显示出类金属特性, 从而加速了CO2电还原过程中的电子传递. 此外, 原位同步辐射傅里叶变换红外光谱和理论计算表明, 银掺杂和硒空位的耦合加速了CO2活化过程, 同时降低了将CO2转化为*COOH中间体的能垒, 从而有效增强了电催化CO2还原性能. 与原始的CdSe纳米棒相比, 银掺杂的CdSe纳米棒表现出2.7倍的电流密度和1.9倍的法拉第效率.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu Y, Tian D, Biswas AN, et al. Transition metal nitrides as promising catalyst supports for tuning CO/H2 syngas production from electrochemical CO2 reduction. Angew Chem Int Ed, 2020, 59: 11345–11348

    Article  CAS  Google Scholar 

  2. Zhang W, Huang C, Xiao Q, et al. Atypical oxygen-bearing copper boosts ethylene selectivity toward electrocatalytic CO2 reduction. J Am Chem Soc, 2020, 142: 11417–11427

    Article  CAS  Google Scholar 

  3. Shen X, Liu X, Wang S, et al. Synergistic modulation at atomically dispersed Fe/Au interface for selective CO2 electroreduction. Nano Lett, 2021, 21: 686–692

    Article  CAS  Google Scholar 

  4. Daiyan R, Tan X, Chen R, et al. Electroreduction of CO2 to CO on a mesoporous carbon catalyst with progressively removed nitrogen moieties. ACS Energy Lett, 2018, 3: 2292–2298

    Article  CAS  Google Scholar 

  5. Wu J, Xie Y, Du S, et al. Heterophase engineering of SnO2/Sn3O4 drives enhanced carbon dioxide electrocatalytic reduction to formic acid. Sci China Mater, 2020, 63: 2314–2324

    Article  CAS  Google Scholar 

  6. Qin B, Li Y, Wang H, et al. Efficient electrochemical reduction of CO2 into CO promoted by sulfur vacancies. Nano Energy, 2019, 60: 43–51

    Article  CAS  Google Scholar 

  7. He Y, Li Y, Zhang J, et al. Low-temperature strategy toward Ni-NC@Ni core-shell nanostructure with single-Ni sites for efficient CO2 electroreduction. Nano Energy, 2020, 77: 105010

    Article  CAS  Google Scholar 

  8. Li X, Xi S, Sun L, et al. Isolated FeN4 sites for efficient electro-catalytic CO2 reduction. Adv Sci, 2020, 7: 2001545

    Article  CAS  Google Scholar 

  9. Wang T, Sang X, Zheng W, et al. Gas diffusion strategy for inserting atomic iron sites into graphitized carbon supports for unusually high-efficient CO2 electroreduction and high-performance Zn-CO2 batteries. Adv Mater, 2020, 32: 2002430

    Article  CAS  Google Scholar 

  10. Cheng H, Liu S, Zhang J, et al. Surface nitrogen-injection engineering for high formation rate of CO2 reduction to formate. Nano Lett, 2020, 20: 6097–6103

    Article  CAS  Google Scholar 

  11. Tao Z, Wu Z, Wu Y, et al. Activating copper for electrocatalytic CO2 reduction to formate via molecular interactions. ACS Catal, 2020, 10: 9271–9275

    Article  CAS  Google Scholar 

  12. Geng Z, Cao Y, Chen W, et al. Regulating the coordination environment of Co single atoms for achieving efficient electro-catalytic activity in CO2 reduction. Appl Catal B-Environ, 2019, 240: 234–240

    Article  CAS  Google Scholar 

  13. Kong X, Liu Y, Li P, et al. Coordinate activation in heterogeneous carbon dioxide reduction on Co-based molecular catalysts. Appl Catal B-Environ, 2020, 268: 118452

    Article  CAS  Google Scholar 

  14. Shang H, Wang T, Pei J, et al. Design of a single-atom indiumδ+-N4 interface for efficient electroreduction of CO2 to formate. Angew Chem Int Ed, 2020, 59: 22465–22469

    Article  CAS  Google Scholar 

  15. Zhang N, Zhang X, Tao L, et al. Silver single-atom catalyst for efficient electrochemical CO2 reduction synthesized from thermal transformation and surface reconstruction. Angew Chem Int Ed, 2021, 60: 6170–6176

    Article  CAS  Google Scholar 

  16. Jiang Z, Wang T, Pei J, et al. Discovery of main group single Sb-N4 active sites for CO2 electroreduction to formate with high efficiency. Energy Environ Sci, 2020, 13: 2856–2863

    Article  CAS  Google Scholar 

  17. Meng N, Liu C, Liu Y, et al. Efficient electrosynthesis of syngas with tunable CO/H2 ratios over ZnxCd1−xS-amine inorganic-organic hybrids. Angew Chem Int Ed, 2019, 58: 18908–18912

    Article  CAS  Google Scholar 

  18. Zhang W, He P, Wang C, et al. Operando evidence of Cu+ stabilization via a single-atom modifier for CO2 electroreduction. J Mater Chem A, 2020, 8: 25970–25977

    Article  CAS  Google Scholar 

  19. Daiyan R, Lovell EC, Huang B, et al. Uncovering atomic-scale stability and reactivity in engineered zinc oxide electrocatalysts for controllable syngas production. Adv Energy Mater, 2020, 10: 2001381

    Article  CAS  Google Scholar 

  20. He Q, Liu D, Lee JH, et al. Electrochemical conversion of CO2 to syngas with controllable CO/H2 ratios over Co and Ni single-atom catalysts. Angew Chem Int Ed, 2020, 59: 3033–3037

    Article  CAS  Google Scholar 

  21. Ye L, Ying Y, Sun D, et al. Highly efficient porous carbon electrocatalyst with controllable N-species content for selective CO2 reduction. Angew Chem Int Ed, 2020, 59: 3244–3251

    Article  CAS  Google Scholar 

  22. Zheng X, De Luna P, García de Arquer FP, et al. Sulfur-modulated tin sites enable highly selective electrochemical reduction of CO2 to formate. Joule, 2017, 1: 794–805

    Article  CAS  Google Scholar 

  23. Tomisaki M, Kasahara S, Natsui K, et al. Switchable product selectivity in the electrochemical reduction of carbon dioxide using boron-doped diamond electrodes. J Am Chem Soc, 2019, 141: 7414–7420

    Article  CAS  Google Scholar 

  24. Tang C, Zhang R, Lu W, et al. Fe-doped CoP nanoarray: A monolithic multifunctional catalyst for highly efficient hydrogen generation. Adv Mater, 2017, 29: 1602441

    Article  Google Scholar 

  25. Yu XY, Feng Y, Jeon Y, et al. Formation of Ni-Co-MoS2 nanoboxes with enhanced electrocatalytic activity for hydrogen evolution. Adv Mater, 2016, 28: 9006–9011

    Article  CAS  Google Scholar 

  26. Yang M, Jiao L, Dong H, et al. Conversion of bimetallic MOF to Ru-doped Cu electrocatalysts for efficient hydrogen evolution in alkaline media. Sci Bull, 2021, 66: 257–264

    Article  CAS  Google Scholar 

  27. Yao N, Li P, Zhou Z, et al. Synergistically tuning water and hydrogen binding abilities over Co4N by Cr doping for exceptional alkaline hydrogen evolution electrocatalysis. Adv Energy Mater, 2019, 9: 1902449

    Article  CAS  Google Scholar 

  28. Ito Y, Shen Y, Hojo D, et al. Correlation between chemical dopants and topological defects in catalytically active nanoporous graphene. Adv Mater, 2016, 28: 10644–10651

    Article  CAS  Google Scholar 

  29. Deng S, Zhong Y, Zeng Y, et al. Directional construction of vertical nitrogen-doped 1T-2H MoSe2/graphene shell/core nanoflake arrays for efficient hydrogen evolution reaction. Adv Mater, 2017, 29: 1700748

    Article  Google Scholar 

  30. Zhang A, He R, Li H, et al. Nickel doping in atomically thin tin disulfide nanosheets enables highly efficient CO2 reduction. Angew Chem Int Ed, 2018, 57: 10954–10958

    Article  CAS  Google Scholar 

  31. Geng Z, Kong X, Chen W, et al. Oxygen vacancies in ZnO nanosheets enhance CO2 electrochemical reduction to CO. Angew Chem Int Ed, 2018, 57: 6054–6059

    Article  CAS  Google Scholar 

  32. Liu L, Jiang Y, Zhao H, et al. Engineering coexposed {001} and {101} facets in oxygen-deficient TiO2 nanocrystals for enhanced CO2 photoreduction under visible light. ACS Catal, 2016, 6: 1097–1108

    Article  CAS  Google Scholar 

  33. Yuan T, Hu Z, Zhao Y, et al. Two-dimensional amorphous SnOx from liquid metal: Mass production, phase transfer, and electro-catalytic CO2 reduction toward formic acid. Nano Lett, 2020, 20: 2916–2922

    Article  CAS  Google Scholar 

  34. Zheng T, Jiang K, Ta N, et al. Large-scale and highly selective CO2 electrocatalytic reduction on nickel single-atom catalyst. Joule, 2019, 3: 265–278

    Article  CAS  Google Scholar 

  35. Chen M, Gao L. Synthesis and characterization of cadmium selenide nanorods via surfactant-assisted hydrothermal method. J Am Ceramic Soc, 2005, 88: 1643–1646

    Article  CAS  Google Scholar 

  36. Chen CC, Chao CY, Lang ZH. Simple solution-phase synthesis of soluble CdS and CdSe nanorods. Chem Mater, 2000, 12: 1516–1518

    Article  CAS  Google Scholar 

  37. Zhang Q, Gupta S, Emrick T, et al. Surface-functionalized CdSe nanorods for assembly in diblock copolymer templates. J Am Chem Soc, 2006, 128: 3898–3899

    Article  CAS  Google Scholar 

  38. Vinson J, Rehr JJ. Ab initio Bethe-Salpeter calculations of the X-ray absorption spectra of transition metals at the L-shell edges. Phys Rev B, 2012, 86: 195135

    Article  Google Scholar 

  39. Mohanty B, Jena BK, Kandasamy M, et al. The role of Se vacancies and Fe doping of nickel selenide in the water oxidation reaction. Sustain Energy Fuels, 2020, 4: 3058–3065

    Article  CAS  Google Scholar 

  40. Wu Y, Zhai P, Cao S, et al. Beyond d orbits: Steering the selectivity of electrochemical CO2 reduction via hybridized sp band of sulfur-incorporated porous Cd architectures with dual collaborative sites. Adv Energy Mater, 2020, 10: 2002499

    Article  CAS  Google Scholar 

  41. Gao FY, Hu SJ, Zhang XL, et al. High-curvature transition-metal chalcogenide nanostructures with a pronounced proximity effect enable fast and selective CO2 electroreduction. Angew Chem Int Ed, 2020, 59: 8706–8712

    Article  CAS  Google Scholar 

  42. Wang C, Cao M, Jiang X, et al. A catalyst based on copper-cadmium bimetal for electrochemical reduction of CO2 to CO with high Faradaic efficiency. Electrochim Acta, 2018, 271: 544–550

    Article  CAS  Google Scholar 

  43. Zeng L, Shi J, Luo J, et al. Silver sulfide anchored on reduced graphene oxide as a high-performance catalyst for CO2 electroreduction. J Power Sources, 2018, 398: 83–90

    Article  CAS  Google Scholar 

  44. Li H, Wen P, Itanze DS, et al. Colloidal silver diphosphide (AgP2) nanocrystals as low overpotential catalysts for CO2 reduction to tunable syngas. Nat Commun, 2019, 10: 5724

    Article  CAS  Google Scholar 

  45. Xu J, Li X, Liu W, et al. Carbon dioxide electroreduction into syngas boosted by a partially delocalized charge in molybdenum sulfide selenide alloy monolayers. Angew Chem Int Ed, 2017, 56: 9121–9125

    Article  CAS  Google Scholar 

  46. Zhang Z, Ahmad F, Zhao W, et al. Enhanced electrocatalytic reduction of CO2via chemical coupling between indium oxide and reduced graphene oxide. Nano Lett, 2019, 19: 4029–4034

    Article  CAS  Google Scholar 

  47. Zhang S, Kang P, Meyer TJ. Nanostructured tin catalysts for selective electrochemical reduction of carbon dioxide to formate. J Am Chem Soc, 2014, 136: 1734–1737

    Article  CAS  Google Scholar 

  48. Yao T, Liu L, Xiao C, et al. Ultrathin nanosheets of half-metallic monoclinic vanadium dioxide with a thermally induced phase transition. Angew Chem Int Ed, 2013, 52: 7554–7558

    Article  CAS  Google Scholar 

  49. Zhang W, Hu Y, Ma L, et al. Progress and perspective of electrocatalytic CO2 reduction for renewable carbonaceous fuels and chemicals. Adv Sci, 2018, 5: 1700275

    Article  Google Scholar 

  50. Singh MR, Goodpaster JD, Weber AZ, et al. Mechanistic insights into electrochemical reduction of CO2 over Ag using density functional theory and transport models. Proc Natl Acad Sci USA, 2017, 114: E8812–E8821

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (12025505 and 21873050), China Ministry of Science and Technology (2017YFA0208300), the Open Fund Project of State Key Laboratory of Environmentally Friendly Energy Materials (20KFHG08), and the Youth Innovation Promotion Association CAS (CX2310007007 and CX2310000091). We thank National Synchrotron Radiation Laboratory (NSRL), Beijing Synchrotron Radiation Facility (BSRF), Shanghai Synchrotron Radiation Facility (SSRF) for the synchrotron beam time.

Author information

Authors and Affiliations

Authors

Contributions

Yao T, Chen T and Zhu W developed the idea and designed the experiments. Chen T, Shen X, Zhang W, Wang L and Ding T performed the catalyst synthesis and characterizations, FT-IR measurements and electrochemical experiments. Cao L and Ding T performed the TEM characterization. Zhang W and Liu X carried out the XAFS calculation and analysis on Cd, Se, and Ag K-edge. Chen T and Yao T co-wrote the paper. Liu T and Li Y performed the DFT calculations. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Wenkun Zhu  (竹文坤), Yafei Li  (李亚飞) or Tao Yao  (姚涛).

Additional information

Tao Chen received his BSc (2016) and MSc (2019) degrees at the School of National Defense Science and Technology, Southwest University of Science and Technology, China. He is currently a PhD student at the National Synchrotron Radiation Laboratory, University of Science and Technology of China. His present research interest focuses on the design of 2D catalysts and their application in photoelectrocatalysis.

Tao Yao received his PhD degree from the National Synchrotron Radiation Laboratory, University of Science and Technology of China in 2011. He is currently a professor of the University of Science and Technology of China and principle investigator (PI) of the group of “Synchrotron Radiation and Energy Material”. His scientific interest foucses on operando/time-resolved spectroscopy and the development of new catalysts for energy conversion.

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic Supplementary Information for

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, T., Liu, T., Shen, X. et al. Synergistically electronic tuning of metalloid CdSe nanorods for enhanced electrochemical CO2 reduction. Sci. China Mater. 64, 2997–3006 (2021). https://doi.org/10.1007/s40843-021-1696-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-021-1696-x

Keywords

Navigation