Skip to main content
Log in

Triazine COF-supported single-atom catalyst (Pd1/trzn-COF) for CO oxidation

三嗪-共价有机框架材料负载的单原子催化剂Pd1/trzn-COF催化CO氧化的理论研究

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Single-atom catalysts (SACs) with well-defined and specific single-atom dispersion on supports offer great potential for achieving both high catalytic activity and selectivity. Covalent organic frameworks (COFs) with tailor-made crystalline structures and designable atomic composition is a class of promising supports for SACs. Herein, we have studied the binding sites and stability of Pd single atoms (SAs) dispersed on triazine COF (Pd1/trzn-COF) and the reaction mechanism of CO oxidation using the density functional theory (DFT). By evaluating different adsorption sites, including the nucleophilic sp2 C atoms, heteroatoms and the conjugated π-electrons of aromatic ring and triazine, it is found that Pd SAs can stably combine with trzn-COF with a binding energy around −5.0 eV, and there are two co-existing dynamic Pd1/trzn-COFs due to the adjacent binding sites on trzn-COF. The reaction activities of CO oxidation on Pd1/trzn-COF can be regulated by the anion-π interaction between a + δ phenyl center and the related −δ moieties as well as the electron-withdrawing feature of imine in the specific complexes. The Pd1/trzn-COF catalyst is found to have a high catalytic activity for CO oxidation via a plausible tri-molecular Eley-Rideal (TER) reaction mechanism. This work provides insights into the d-π interaction between Pd SAs and trzn-COF, and helps to better understand and design new SACs supported on COF nanomaterials.

摘要

共价有机框架材料(COF)是一类新兴的可裁剪、 原子组成可控的催化剂载体. 单原子催化剂(SACs)具有明确的活性中心结构和原子组成, 为同时满足催化剂的高活性和高选择性提供可能, 并为催化剂的实验和理论的高契合度研究提供桥梁. 因此, 本论文采用密度泛函理论(DFT), 系统研究了以典型三嗪-共价有机框架材料为载体的钯单原子催化剂(Pd1/trzn-COF)的金属负载位点、 稳定性和反应活性. 基于sp2 C原子、 N/O杂原子和芳香环与三嗪环的共轭π电子的亲核性, 一系列不同的吸附位点被用于负载Pd原子, 研究结果表明Pd原子以约−5.0 eV的结合能稳定地结合在该COF材料上; 基于两个最稳定构型间的位置毗邻性、 能量相近性及其温和的迁移能垒, 可以预测该体系中存在动态共存的单原子催化位点. 此外, CO氧化机理研究表明, Pd1/trzn-COF的催化活性可通过特定−δ基团与+δ苯环中心的阴离子−π相互作用以及亚胺基团的吸电子特性进行调控. 我们设计了一种新型的单原子催化剂Pd1/trzn-COF, 并预测了其可能的CO氧化反应机理为三分子Eley-Rideal机理. 该工作揭示了Pd原子与trzn-COF之间的d−π相互作用 模式对于单原子催化剂Pd1/trzn-COF的稳定性和反应活性的影响, 其研究结果有助于理解和设计基于COF的新型单原子催化剂.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Qiao B, Wang A, Yang X, et al. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat Chem, 2011, 3: 634–641

    Article  CAS  Google Scholar 

  2. Yang XF, Wang A, Qiao B, et al. Single-atom catalysts: A new frontier in heterogeneous catalysis. Acc Chem Res, 2013, 46: 1740–1748

    Article  CAS  Google Scholar 

  3. Liang JX, Wang YG, Yang XF, et al. Recent Advances in Single-Atom Catalysis. Encyclopedia of Inorganic and Bioinorganic Chemistry. New York: John Wiley & Sons, Ltd., 2017

    Google Scholar 

  4. Liu JC, Tang Y, Wang YG, et al. Theoretical understanding of the stability of single-atom catalysts. Natl Sci Rev, 2018, 5: 638–641

    Article  CAS  Google Scholar 

  5. Wang A, Li J, Zhang T. Heterogeneous single-atom catalysis. Nat Rev Chem, 2018, 2: 65–81

    Article  CAS  Google Scholar 

  6. Jiao J, Lin R, Liu S, et al. Copper atom-pair catalyst anchored on alloy nanowires for selective and efficient electrochemical reduction of CO2. Nat Chem, 2019, 11: 222–228

    Article  CAS  Google Scholar 

  7. Li Z, Chen Y, Ji S, et al. Iridium single-atom catalyst on nitrogen-doped carbon for formic acid oxidation synthesized using a general host-guest strategy. Nat Chem, 2020, 12: 764–772

    Article  Google Scholar 

  8. Li J, Stephanopoulos MF, Xia Y. Introduction: Heterogeneous single-atom catalysis. Chem Rev, 2020, 120: 11699–11702

    Article  CAS  Google Scholar 

  9. Zhuo HY, Zhang X, Liang JX, et al. Theoretical understandings of graphene-based metal single-atom catalysts: stability and catalytic performance. Chem Rev, 2020, 120: 12315–12341

    Article  CAS  Google Scholar 

  10. Li J, Li Y, Zhang T. Recent progresses in the research of singleatom catalysts. Sci China Mater, 2020, 63: 889–891

    Article  Google Scholar 

  11. Pan Y, Zhang C, Lin Y, et al. Electrocatalyst engineering and structure-activity relationship in hydrogen evolution reaction: From nanostructures to single atoms. Sci China Mater, 2020, 63: 921–948

    Article  CAS  Google Scholar 

  12. Liu K, Tang Y, Yu Z, et al. High-loading and thermally stable Pt1/MgAl1.2Fe0.8O4 single-atom catalysts for high-temperature applications. Sci China Mater, 2020, 63: 949–958

    Article  CAS  Google Scholar 

  13. Ren S, Yu Q, Yu X, et al. Graphene-supported metal single-atom catalysts: A concise review. Sci China Mater, 2020, 63: 903–920

    Article  CAS  Google Scholar 

  14. Yang F, Ding S, Song H, et al. Single-atom Pd dispersed on nanoscale anatase TiO2 for the selective hydrogenation of phenyl-acetylene. Sci China Mater, 2020, 63: 982–992

    Article  CAS  Google Scholar 

  15. Xu Q, Guo CX, Tian S, et al. Coordination structure dominated performance of single-atomic Pt catalyst for anti-Markovnikov hydroboration of alkenes. Sci China Mater, 2020, 63: 972–981

    Article  CAS  Google Scholar 

  16. Baskaran S, Xu CQ, Wang YG, et al. Catalytic mechanism and bonding analyses of Au-Pd single atom alloy (SAA): CO oxidation reaction Sci China Mater, 2020, 63: 993–1002

    Article  CAS  Google Scholar 

  17. Wang WL, Santos EJG, Jiang B, et al. Direct observation of a long-lived single-atom catalyst chiseling atomic structures in graphene Nano Lett, 2014, 14: 450–455

    Article  CAS  Google Scholar 

  18. Wang YG, Mei D, Glezakou VA, et al. Dynamic formation of single-atom catalytic active sites on ceria-supported gold nano-particles. Nat Commun, 2015, 6: 6511–6517

    Article  CAS  Google Scholar 

  19. Mao K, Li L, Zhang W, et al. A theoretical study of single-atom catalysis of CO oxidation using Au embedded 2D h-BN mono-layer: A CO-promoted O2 activation. Sci Rep, 2015, 4: 5441

    Article  Google Scholar 

  20. Zhuo HY, Yu X, Yu Q, et al. Selective hydrogenation of acetylene on graphene-supported non-noble metal single-atom catalysts. Sci China Mater, 2020, 63: 1741–1749

    Article  CAS  Google Scholar 

  21. Liang J, Yu Q, Yang X, et al. A systematic theoretical study on FeOx-supported single-atom catalysts: M1/FeOx for CO oxidation. Nano Res, 2018, 11: 1599–1611

    Article  CAS  Google Scholar 

  22. Zhao S, Chen F, Duan S, et al. Remarkable active-site dependent H2O promoting effect in CO oxidation. Nat Commun, 2019, 10: 3824–3832

    Article  Google Scholar 

  23. Huang ZQ, Liu LP, Qi S, et al. Understanding all-solid frustrated-Lewis-pair sites on CeO2 from theoretical perspectives. ACS Catal, 2018, 8: 546–554

    Article  CAS  Google Scholar 

  24. Liu P, Zhao Y, Qin R, et al. Photochemical route for synthesizing atomically dispersed palladium catalysts. Science, 2016, 352: 797–800

    Article  CAS  Google Scholar 

  25. Liu W, Zhang L, Liu X, et al. Discriminating catalytically active FeNx species of atomically dispersed Fe-N-C catalyst for selective oxidation of the C-H bond. J Am Chem Soc, 2017, 139: 10790–10798

    Article  CAS  Google Scholar 

  26. Liu W, Zhang L, Yan W, et al. Single-atom dispersed Co-N-C catalyst: Structure identification and performance for hydrogenative coupling of nitroarenes. Chem Sci, 2016, 7: 5758–5764

    Article  CAS  Google Scholar 

  27. Pan Y, Chen Y, Wu K, et al. Regulating the coordination structure of single-atom Fe-NxCy catalytic sites for benzene oxidation. Nat Commun, 2019, 10: 4290–4300

    Article  Google Scholar 

  28. Chen Z, Chen Y, Chao S, et al. Single-atom AuI-N3 site for acetylene hydrochlorination reaction. ACS Catal, 2020, 10: 1865–1870

    Article  CAS  Google Scholar 

  29. Nie G, Li P, Liang JX, et al. Theoretical investigation on the photocatalytic activity of the Au/g-C3N4 monolayer. J Theor Comput Chem, 2017, 16: 1750013

    Article  CAS  Google Scholar 

  30. Kyriakou G, Boucher MB, Jewell AD, et al. Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations. Science, 2012, 335: 1209–1212

    Article  CAS  Google Scholar 

  31. Yin P, Yao T, Wu Y, et al. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew Chem Int Ed, 2016, 55: 10800–10805

    Article  CAS  Google Scholar 

  32. Côté AP, Benin AI, Ockwig NW, et al. Porous, crystalline, covalent organic frameworks. Science, 2005, 310: 1166–1170

    Article  Google Scholar 

  33. Colson JW, Dichtel WR. Rationally synthesized two-dimensional polymers. Nat Chem, 2013, 5: 453–465

    Article  CAS  Google Scholar 

  34. Colson JW, Mann JA, DeBlase CR, et al. Patterned growth of oriented 2D covalent organic framework thin films on single-layer graphene. J Polym Sci Part A-Polym Chem, 2015, 53: 378–384

    Article  CAS  Google Scholar 

  35. Medina DD, Rotter JM, Hu Y, et al. Room temperature synthesis of covalent-organic framework films through vapor-assisted conversion. J Am Chem Soc, 2015, 137: 1016–1019

    Article  CAS  Google Scholar 

  36. Yoo JT, Lee SH, Hirata S, et al. In situ synthesis of covalent organic frameworks (COFs) on carbon nanotubes and graphenes by so-nochemical reaction for CO2 adsorbents. Chem Lett, 2015, 44: 560–562

    Article  CAS  Google Scholar 

  37. Pachfule P, Panda MK, Kandambeth S, et al. Multifunctional and robust covalent organic framework-nanoparticle hybrids. J Mater Chem A, 2014, 2: 7944–7952

    Article  CAS  Google Scholar 

  38. Pachfule P, Kandambeth S, Díaz Díaz D, et al. Highly stable covalent organic framework—Au nanoparticles hybrids for enhanced activity for nitrophenol reduction. Chem Commun, 2014, 50: 3169–3172

    Article  CAS  Google Scholar 

  39. Ding SY, Gao J, Wang Q, et al. Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in Suzuki-Miyaura coupling reaction. J Am Chem Soc, 2011, 133: 19816–19822

    Article  CAS  Google Scholar 

  40. Chao S, Guan Q, Li W. Study of the active site for acetylene hydrochlorination in AuCl3/C catalysts. J Catal, 2015, 330: 273–279

    Article  CAS  Google Scholar 

  41. Gong YN, Zhong W, Li Y, et al. Regulating photocatalysis by spinstate manipulation of cobalt in covalent organic frameworks. J Am Chem Soc, 2020, 142: 16723–16731

    Article  CAS  Google Scholar 

  42. Aiyappa HB, Thote J, Shinde DB, et al. Cobalt-modified covalent organic framework as a robust water oxidation electrocatalyst. Chem Mater, 2016, 28: 4375–4379

    Article  CAS  Google Scholar 

  43. Zhong W, Sa R, Li L, et al. A covalent organic framework bearing single Ni sites as a synergistic photocatalyst for selective photo-reduction of CO2 to CO. J Am Chem Soc, 2019, 141: 7615–7621

    Article  CAS  Google Scholar 

  44. Sun Q, Aguila B, Perman J, et al. Flexibility matters: Cooperative active sites in covalent organic framework and threaded ionic polymer. J Am Chem Soc, 2016, 138: 15790–15796

    Article  CAS  Google Scholar 

  45. Stegbauer L, Schwinghammer K, Lotsch BV. A hydrazone-based covalent organic framework for photocatalytic hydrogen production. Chem Sci, 2014, 5: 2789–2793

    Article  CAS  Google Scholar 

  46. Puthiaraj P, Lee YR, Zhang S, et al. Triazine-based covalent organic polymers: design, synthesis and applications in heterogeneous catalysis. J Mater Chem A, 2016, 4: 16288–16311

    Article  CAS  Google Scholar 

  47. Gomes R, Bhanja P, Bhaumik A. A triazine-based covalent organic polymer for efficient CO2 adsorption. Chem Commun, 2015, 51: 10050–10053

    Article  CAS  Google Scholar 

  48. Xu N, Wang RL, Li DP, et al. A new triazine-based covalent organic polymer for efficient photodegradation of both acidic and basic dyes under visible light. Dalton Trans, 2018, 47: 4191–4197

    Article  CAS  Google Scholar 

  49. Miroshnikov M, Divya KP, Babu G, et al. Power from nature: Designing green battery materials from electroactive quinone derivatives and organic polymers. J Mater Chem A, 2016, 4: 12370–12386

    Article  CAS  Google Scholar 

  50. Mullangi D, Nandi S, Shalini S, et al. Pd loaded amphiphilic COF as catalyst for multi-fold Heck reactions, C-C couplings and CO oxidation. Sci Rep, 2015, 5: 10876–10887

    Article  Google Scholar 

  51. He Y, Liu JC, Luo L, et al. Size-dependent dynamic structures of supported gold nanoparticles in CO oxidation reaction condition. Proc Natl Acad Sci USA, 2018, 115: 7700–7705

    Article  CAS  Google Scholar 

  52. Parkinson GS, Novotny Z, Argentero G, et al. Carbon monoxide-induced adatom sintering in a Pd-Fe3O4 model catalyst. Nat Mater, 2013, 12: 724–728

    Article  CAS  Google Scholar 

  53. Wang J, McEntee M, Tang W, et al. Formation, migration, and reactivity of Au-CO complexes on gold surfaces. J Am Chem Soc, 2016, 138: 1518–1526

    Article  CAS  Google Scholar 

  54. Wang YG, Yoon Y, Glezakou VA, et al. The role of reducible oxide-metal cluster charge transfer in catalytic processes: New insights on the catalytic mechanism of CO oxidation on Au/TiO2 from ab initio molecular dynamics. J Am Chem Soc, 2013, 135: 10673–10683

    Article  CAS  Google Scholar 

  55. Tang Y, Asokan C, Xu M, et al. Rh single atoms on TiO2 dynamically respond to reaction conditions by adapting their site. Nat Commun, 2019, 10: 4488–4497

    Article  Google Scholar 

  56. Guo J, Jiang D. Covalent organic frameworks for heterogeneous catalysis: Principle, current status, and challenges. ACS Cent Sci, 2020, 6: 869–879

    Article  CAS  Google Scholar 

  57. Pinchuk VM, Kotlyarova ES, Parkhomenko NV, et al. Quantum chemical analysis of the Eley-Rideal and Langmuir-Hinshelwood mechanisms of the catalytic oxidation of carbon monoxide on the nickel surface. J Struct Chem, 1996, 37: 544–556

    Article  Google Scholar 

  58. Lopez-Acevedo O, Kacprzak KA, Akola J, et al. Quantum size effects in ambient CO oxidation catalysed by ligand-protected gold clusters. Nat Chem, 2010, 2: 329–334

    Article  CAS  Google Scholar 

  59. Wang Y, Wu G, Yang M, et al. Competition between Eley-Rideal and Langmuir-Hinshelwood pathways of CO oxidation on Cun and CunO (n = 6, 7) clusters. J Phys Chem C, 2013, 117: 8767–8773

    Article  CAS  Google Scholar 

  60. Perdew JP, Yue W. Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation. Phys Rev B, 1986, 33: 8800–8802

    Article  CAS  Google Scholar 

  61. Perdew JP, Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B, 1992, 45: 13244–13249

    Article  CAS  Google Scholar 

  62. Ortmann F, Bechstedt F, Schmidt WG. Semiempirical van der Waals correction to the density functional description of solids and molecular structures. Phys Rev B, 2006, 73: 205101

    Article  Google Scholar 

  63. Delley B. Hardness conserving semilocal pseudopotentials. Phys Rev B, 2002, 66: 155125

    Article  Google Scholar 

  64. Yaghi OM, O’Keeffe M, Ockwig NW, et al. Reticular synthesis and the design of new materials. Nature, 2003, 423: 705–714

    Article  CAS  Google Scholar 

  65. Halgren TA, Lipscomb WN. The synchronous-transit method for determining reaction pathways and locating molecular transition states. Chem Phys Lett, 1977, 49: 225–232

    Article  CAS  Google Scholar 

  66. Ananikov VP, Musaev DG, Morokuma K. Theoretical insight into the C-C coupling reactions of the vinyl, phenyl, ethynyl, and methyl complexes of palladium and platinum. Organometallics, 2005, 24: 715–723

    Article  CAS  Google Scholar 

  67. Pyykkö P, Atsumi M. Molecular single-bond covalent radii for elements 1–118. Chem Eur J, 2009, 15: 186–197

    Article  Google Scholar 

  68. Lu T, Chen F. Multiwfn: A multifunctional wavefunction analyzer. J Comput Chem, 2012, 33: 580–592

    Article  Google Scholar 

  69. Humphrey W, Dalke A, Schulten K. VMD: Visual molecular dynamics. J Mol Graphics, 1996, 14: 33–38

    Article  CAS  Google Scholar 

  70. Schottel BL, Chifotides HT, Dunbar KR. Anion-π interactions. Chem Soc Rev, 2008, 37: 68–83

    Article  CAS  Google Scholar 

  71. Yoshioka Y, Schaefer III HF. Theoretical investigation of the electron affinity of CO2. J Chem Phys, 1981, 75: 1040–1041

    Article  CAS  Google Scholar 

  72. Xu G, Wang R, Ding Y, et al. First-principles study on the single Ir atom embedded graphdiyne: An efficient catalyst for CO oxidation. J Phys Chem C, 2018, 122: 23481–23492

    Article  CAS  Google Scholar 

  73. Liu C, Tan Y, Lin S, et al. CO self-promoting oxidation on nanosized gold clusters: Triangular Au3 active site and CO induced O-O scission. J Am Chem Soc, 2013, 135: 2583–2595

    Article  CAS  Google Scholar 

  74. Talib SH, Hussain S, Baskaran S, et al. Chromium single-atom catalyst with graphyne support: A theoretical study of NO oxidation and reduction. ACS Catal, 2020, 10: 11951–11961

    Article  CAS  Google Scholar 

  75. Talib SH, Yu X, Yu Q, et al. Non-noble metal single-atom catalysts with phosphotungstic acid (PTA) support: A theoretical study of ethylene epoxidation. Sci China Mater, 2020, 63: 1003–1014

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22033005, 21590792 and 21763006), and Guangdong Provincial Key Laboratory of Catalysis (2020B121201002). The calculations were performed using supercomputers at SUSTech and Tsinghua National Laboratory for Information Science and Technology. We thank Professor Xufeng Lin (hatrick2009@upc.edu.cn) for helpful discussion during the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Li J directed the research. Liang JX, Liu CG and Chen YJ conducted the DFT calculations. Chen YJ, Zhuo HY, and Pan Y analyzed the data. All the authors discussed the results and co-wrote the manuscript.

Corresponding authors

Correspondence to Jin-Xia Liang  (梁锦霞), Chen-Guang Liu  (刘晨光) or Jun Li  (李隽).

Ethics declarations

Conflict of interest The authors declare no competing financial interest.

Additional information

Yin-Juan Chen is currently a PhD candidate in Prof. Chen-Guang Liu’s group at China University of Petroleum (East China), and also a visiting student in Prof. Jun Li’s group, Department of Chemistry, Tsinghua University (Beijing, China). Her current research interests focus on theoretical investigations on heterogeneous single-atom catalysts (SACs).

Jin-Xia Liang received her BSc degree from the Department of Chemistry at Shaanxi University of Technology in 2004, MS degree from the School of Chemistry and Chemical Engineering at Shaanxi Normal University in 2009, and PhD degree from the College of Chemistry and Chemical Engineering at Xiamen University in 2012. She did her postdoctoral research at the Department of Chemistry, Tsinghua University. She joined the faculty of Guizhou Provincial Key Laboratory of Computational Nano Material Science, Guizhou Education University in 2014. She is currently a research associate professor at the Department of Chemistry, Southern University of Science and Technology. Her research interests focus on the theoretical design of functional nanomaterials and investigation of catalytic mechanisms of SACs.

Chen-Guang Liu received his PhD degree in 1991 in applied chemistry at China University of Petroleum. He is now a professor in the State Key Laboratory of Heavy Oil Processing and College of Chemical Engineering at China University of Petroleum. His current research interests include petrochemistry, petroleum refining and chemical engineering, green fine chemical technology and renewable energy and oxygen-containing fuel applications.

Jun Li received his PhD degree from Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences in 1992. He did postdoctoral research at the University of Siegen (Germany) and The Ohio State University (USA) from 1994 to 1997. He worked as a Research Scientist at The Ohio State University and a Senior Research Scientist and Chief Scientist at the Pacific Northwest National Laboratory from 1997 to 2009. He is now a full professor at Tsinghua University. His research involves theoretical chemistry, relativistic heavy-element chemistry, and computational catalysis science.

Supporting Information for

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, YJ., Zhuo, HY., Pan, Y. et al. Triazine COF-supported single-atom catalyst (Pd1/trzn-COF) for CO oxidation. Sci. China Mater. 64, 1939–1951 (2021). https://doi.org/10.1007/s40843-021-1662-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-021-1662-8

Keywords

Navigation