Skip to main content
Log in

Efficient reversible CO/CO2 conversion in solid oxide cells with a phase-transformed fuel electrode

相变燃料电极实现固体氧化物电池高效可逆CO/CO2转化

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

The reversible solid oxide cell (RSOC) is an attractive technology to mutually convert power and chemicals at elevated temperatures. However, its development has been hindered mainly due to the absence of a highly active and durable fuel electrode. Here, we report a phase-transformed CoFe-Sr3Fe1.25Mo0.75O7−δ (CoFe-SFM) fuel electrode consisting of CoFe nanoparticles and Ruddlesden-Popper-layered Sr3Fe1.25Mo0.75O7−δ (SFM) from a Sr2Fe7/6Mo0.5Co1/3O6−δ (SFMCo) perovskite oxide after annealing in hydrogen and apply it to reversible CO/CO2 conversion in RSOC. The CoFe-SFM fuel electrode shows improved catalytic activity by accelerating oxygen diffusion and surface kinetics towards the CO/CO2 conversion as demonstrated by the distribution of relaxation time (DRT) study and equivalent circuit model fitting analysis. Furthermore, an electrolyte-supported single cell is evaluated in the 2:1 CO-CO2 atmosphere at 800°C, which shows a peak power density of 259 mW cm−2 for CO oxidation and a current density of −0.453 A cm−2 at 1.3 V for CO2 reduction, which correspond to 3.079 and 3.155 mL min−1 cm−2 for the CO and CO2 conversion rates, respectively. More importantly, the reversible conversion is successfully demonstrated over 20 cyclic electrolysis and fuel cell switching test modes at 1.3 and 0.6 V. This work provides a useful guideline for designing a fuel electrode through a surface/interface exsolution process for RSOC towards efficient CO-CO2 reversible conversion.

摘要

固体氧化物电池可实现CO/CO2的可逆转化, 在电能和化学能相互转化过程中显示出巨大潜力. 然而, 其商业化进展一直受到燃料极抗积碳性能差的限制. 本工作中, 我们发展了一种CoFe合金纳米颗粒和Ruddlesden-Popper层状结构Sr3Fe1.25Mo0.75O7−δ复合新型燃料电极(CoFe-SFM), 其可以通过钙钛矿Sr2Fe7/6Mo0.5Co1/3O6−δ在还原气氛中退火发生相变得到. 电化学阻抗谱和弛豫时间分步法分析可知CoFe-SFM电极通过改善体相氧化学扩散能力和表面氧交换过程来增强CO氧化和CO2还原动力学. 在固体氧化物燃料电池模式下, 800°C的最大功率达到259 mW cm−2; 在固体氧化物电解电池模式下, 1.3 V工作电压下单电池的电解电流密度为−0.453 A cm−2, 都远超对比电极材料. 在20次SOFC-SOEC循环操作条件下, CoFe-SFM燃料极依然保持稳定的微结构和抗积碳性能,电池性能保持良好. 该工作可为CO2转化、抗积碳电极材料设计和提升电极表界面反应动力学提供一定的指导作用.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mogensen MB, Chen M, Frandsen HL, et al. Reversible solid-oxide cells for clean and sustainable energy. Clean Energy, 2019, 3: 175–201

    Article  Google Scholar 

  2. Ding H, Wu W, Jiang C, et al. Self-sustainable protonic ceramic electrochemical cells using a triple conducting electrode for hydrogen and power production. Nat Commun, 2020, 11: 1907

    Article  CAS  Google Scholar 

  3. Yang D, Wang G, Wang X. Photo- and thermo-coupled electro-catalysis in carbon dioxide and methane conversion. Sci China Mater, 2019, 62: 1369–1373

    Article  Google Scholar 

  4. Irvine JTS, Neagu D, Verbraeken MC, et al. Evolution of the electrochemical interface in high-temperature fuel cells and electrolysers. Nat Energy, 2016, 1: 15014

    Article  CAS  Google Scholar 

  5. Wang Y, Liu T, Lei L, et al. High temperature solid oxide H2O/CO2 co-electrolysis for syngas production. Fuel Processing Tech, 2017, 161: 248–258

    Article  CAS  Google Scholar 

  6. Da’as EH, Bi L, Boulfrad L, et al. Nanostructuring the electronic conducting La0.8Sr0.2MnO3−δ cathode for high-performance in proton-conducting solid oxide fuel cells below 600°C. Sci China Mater, 2018, 61: 57–64

    Article  CAS  Google Scholar 

  7. Liu T, Chen X, Wu J, et al. A highly-performed, dual-layered cathode supported solid oxide electrolysis cell for efficient CO2 electrolysis fabricated by phase inversion Co-tape casting method. J Electrochem Soc, 2017, 164: F1130–F1135

    Article  CAS  Google Scholar 

  8. Skafte TL, Blennow P, Hjelm J, et al. Carbon deposition and sulfur poisoning during CO2 electrolysis in nickel-based solid oxide cell electrodes. J Power Sources, 2018, 373: 54–60

    Article  CAS  Google Scholar 

  9. Wang Y, Liu T, Fang S, et al. Syngas production on a symmetrical solid oxide H2O/CO2 co-electrolysis cell with Sr2Fe1.5Mo0.5O6-Sm0.2Ce0.8O1.9 electrodes. J Power Sources, 2016, 305: 240–248

    Article  CAS  Google Scholar 

  10. Park S, Han H, Yoon W, et al. Improving a sulfur-tolerant Ruddlesden-Popper catalyst by fluorine doping for CO2 electrolysis reaction. ACS Sustain Chem Eng, 2020, 8: 6564–6571

    Article  CAS  Google Scholar 

  11. Ebbesen SD, Mogensen M. Electrolysis of carbon dioxide in solid oxide electrolysis cells. J Power Sources, 2009, 193: 349–358

    Article  CAS  Google Scholar 

  12. Yan J, Chen H, Dogdibegovic E, et al. High-efficiency intermediate temperature solid oxide electrolyzer cells for the conversion of carbon dioxide to fuels. J Power Sources, 2014, 252: 79–84

    Article  CAS  Google Scholar 

  13. Yue X, Irvine JTS. Modification of LSCM-GDC cathodes to enhance performance for high temperature CO2 electrolysis using solid oxide electrolysis cells (SOECs). J Mater Chem A, 2017, 5: 7081–7090

    Article  CAS  Google Scholar 

  14. Zhang L, Hu S, Li W, et al. Nano-CeO2-modified cathodes for direct electrochemical CO2 reduction in solid oxide electrolysis cells. ACS Sustain Chem Eng, 2019, 7: 9629–9636

    Article  CAS  Google Scholar 

  15. Ye L, Hu X, Wang X, et al. Enhanced CO2 electrolysis with a SrTiO3 cathode through a dual doping strategy. J Mater Chem A, 2019, 7: 2764–2772

    Article  CAS  Google Scholar 

  16. Li Y, Chen X, Yang Y, et al. Mixed-conductor Sr2Fe1.5Mo0.5O6δ as robust fuel electrode for pure CO2 reduction in solid oxide electrolysis cell. ACS Sustain Chem Eng, 2017, 5: 11403–11412

    Article  CAS  Google Scholar 

  17. Rabuni MF, Vatcharasuwan N, Li T, et al. High performance micro-monolithic reversible solid oxide electrochemical reactor. J Power Sources, 2020, 458: 228026

    Article  CAS  Google Scholar 

  18. Connor PA, Yue X, Savaniu CD, et al. Tailoring SOFC electrode microstructures for improved performance. Adv Energy Mater, 2018, 8: 1800120

    Article  CAS  Google Scholar 

  19. Zhao C, Li Y, Zhang W, et al. Heterointerface engineering for enhancing the electrochemical performance of solid oxide cells. Energy Environ Sci, 2020, 13: 53–85

    Article  Google Scholar 

  20. Ling Y, Wang Z, Wang Z, et al. A robust carbon tolerant anode for solid oxide fuel cells. Sci China Mater, 2015, 58: 204–212

    Article  CAS  Google Scholar 

  21. Gong M, Dai H. A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts. Nano Res, 2015, 8: 23–39

    Article  CAS  Google Scholar 

  22. Khan WU, Chen SS, Tsang DCW, et al. Catalytically active interfaces in titania nanorod-supported copper catalysts for CO oxidation. Nano Res, 2020, 13: 533–542

    Article  CAS  Google Scholar 

  23. Yang C, Yang Z, Jin C, et al. Sulfur-tolerant redox-reversible anode material for direct hydrocarbon solid oxide fuel cells. Adv Mater, 2012, 24: 1439–1443

    Article  CAS  Google Scholar 

  24. Sun YF, Zhang YQ, Chen J, et al. New opportunity for in situ exsolution of metallic nanoparticles on perovskite parent. Nano Lett, 2016, 16: 5303–5309

    Article  CAS  Google Scholar 

  25. Neagu D, Tsekouras G, Miller DN, et al. In situ growth of nano-particles through control of non-stoichiometry. Nat Chem, 2013, 5: 916–923

    Article  CAS  Google Scholar 

  26. Zhu Y, Zhou W, Ran R, et al. Promotion of oxygen reduction by exsolved silver nanoparticles on a perovskite scaffold for low-temperature solid oxide fuel cells. Nano Lett, 2016, 16: 512–518

    Article  CAS  Google Scholar 

  27. Du Z, Zhao H, Yi S, et al. High-performance anode material Sr2FeMo0.65Ni0.35O6−δ with in situ exsolved nanoparticle catalyst. ACS Nano, 2016, 10: 8660–8669

    Article  CAS  Google Scholar 

  28. Zhang T, Zhao Y, Zhang X, et al. Thermal stability of an in situ exsolved metallic nanoparticle structured perovskite type hydrogen electrode for solid oxide cells. ACS Sustain Chem Eng, 2019, 7: 17834–17844

    Article  CAS  Google Scholar 

  29. Neagu D, Papaioannou EI, RamLi WKW, et al. Demonstration of chemistry at a point through restructuring and catalytic activation at anchored nanoparticles. Nat Commun, 2017, 8: 1855

    Article  CAS  Google Scholar 

  30. Liu S, Liu Q, Luo JL. CO2-to-CO conversion on layered perovskite with in situ exsolved Co-Fe alloy nanoparticles: an active and stable cathode for solid oxide electrolysis cells. J Mater Chem A, 2016, 4: 17521–17528

    Article  CAS  Google Scholar 

  31. Qiu P, Yang X, Wang W, et al. Redox-reversible electrode material for direct hydrocarbon solid oxide fuel cells. ACS Appl Mater Interfaces, 2020, 12: 13988–13995

    Article  CAS  Google Scholar 

  32. Yang C, Li J, Lin Y, et al. In situ fabrication of CoFe alloy nano-particles structured (Pr0.4Sr0.6)3(Fe0.85Nb0.15)2O7 ceramic anode for direct hydrocarbon solid oxide fuel cells. Nano Energy, 2015, 11: 704–710

    Article  CAS  Google Scholar 

  33. Hu B, Wang Y, Xia C. Effects of ceria conductivity on the oxygen incorporation at the LSCF-SDC-gas three-phase boundary. J Electrochem Soc, 2015, 162: F33–F39

    Article  CAS  Google Scholar 

  34. Chen L, Chen F, Xia C. Direct synthesis of methane from CO2-H2O co-electrolysis in tubular solid oxide electrolysis cells. Energy Environ Sci, 2014, 7: 4018–4022

    Article  CAS  Google Scholar 

  35. Wan TH, Saccoccio M, Chen C, et al. Influence of the discretization methods on the distribution of relaxation times deconvolution: implementing radial basis functions with DRTtools. Electrochim Acta, 2015, 184: 483–499

    Article  CAS  Google Scholar 

  36. Saccoccio M, Wan TH, Chen C, et al. Optimal regularization in distribution of relaxation times applied to electrochemical impedance spectroscopy: ridge and lasso regression methods—A theoretical and experimental study. Electrochim Acta, 2014, 147: 470–482

    Article  CAS  Google Scholar 

  37. Li Y, Hu B, Xia C, et al. A novel fuel electrode enabling direct CO2 electrolysis with excellent and stable cell performance. J Mater Chem A, 2017, 5: 20833–20842

    Article  CAS  Google Scholar 

  38. Zheng K, Swierczek K, Polfus JM, et al. Carbon deposition and sulfur poisoning in SrFe0.75Mo0.25O3−δ and SrFe0.5Mn0.25Mo0.25O3−δ electrode materials for symmetrical SOFCs. J Electrochem Soc, 2015, 162: F1078–F1087

    Article  CAS  Google Scholar 

  39. Xi X, Cao ZS, Shen XQ, et al. In situ embedding of CoFe nanocatalysts into Sr3FeMoO7 matrix as high-performance anode materials for solid oxide fuel cells. J Power Sources, 2020, 459: 228071

    Article  CAS  Google Scholar 

  40. Lv H, Lin L, Zhang X, et al. In situ investigation of reversible exsolution/dissolution of CoFe alloy nanoparticles in a Co-doped Sr2Fe1.5Mo0.5O6−δ cathode for CO2 electrolysis. Adv Mater, 2020, 32: 1906193

    Article  CAS  Google Scholar 

  41. Gao Y, Chen D, Saccoccio M, et al. From material design to mechanism study: Nanoscale Ni exsolution on a highly active A-site deficient anode material for solid oxide fuel cells. Nano Energy, 2016, 27: 499–508

    Article  CAS  Google Scholar 

  42. Neagu D, Oh TS, Miller DN, et al. Nano-socketed nickel particles with enhanced coking resistance grown in situ by redox exsolution. Nat Commun, 2015, 6: 8120

    Article  Google Scholar 

  43. Li Y, Li Y, Wan Y, et al. Perovskite oxyfluoride electrode enabling direct electrolyzing carbon dioxide with excellent electrochemical performances. Adv Energy Mater, 2019, 9: 1803156

    Article  CAS  Google Scholar 

  44. Lv H, Lin L, Zhang X, et al. In situ exsolved FeNi3 nanoparticles on nickel doped Sr2Fe1.5Mo0.5O6−δ perovskite for efficient electrochemical CO2 reduction reaction. J Mater Chem A, 2019, 7: 11967–11975

    Article  CAS  Google Scholar 

  45. Zhu Z, Li M, Xia C, et al. Bismuth-doped La1.75Sr0.25NiO4+δ as a novel cathode material for solid oxide fuel cells. J Mater Chem A, 2017, 5: 14012–14019

    Article  CAS  Google Scholar 

  46. Chroneos A, Yildiz B, Tarancón A, et al. Oxygen diffusion in solid oxide fuel cell cathode and electrolyte materials: mechanistic insights from atomistic simulations. Energy Environ Sci, 2011, 4: 2774–2789

    Article  CAS  Google Scholar 

  47. Sahai A, Goswami N. Probing the dominance of interstitial oxygen defects in ZnO nanoparticles through structural and optical characterizations. Ceramics Int, 2014, 40: 14569–14578

    Article  CAS  Google Scholar 

  48. Fan HB, Yang SY, Zhang PF, et al. Investigation of oxygen vacancy and interstitial oxygen defects in ZnO films by photoluminescence and X-ray photoelectron spectroscopy. Chin Phys Lett, 2007, 24: 2108–2111

    Article  CAS  Google Scholar 

  49. Ma X, Carneiro JSA, Gu XK, et al. Engineering complex, layered metal oxides: High-performance nickelate oxide nanostructures for oxygen exchange and reduction. ACS Catal, 2015, 5: 4013–4019

    Article  CAS  Google Scholar 

  50. Hu X, Li M, Xie Y, et al. Oxygen-deficient Ruddlesden-Popper-type lanthanum strontium cuprate doped with bismuth as a cathode for solid oxide fuel cells. ACS Appl Mater Interfaces, 2019, 11: 21593–21602

    Article  CAS  Google Scholar 

  51. Meng X, Wang Y, Zhao Y, et al. In-situ exsolution of nanoparticles from Ni substituted Sr2Fe1.5Mo0.5O6 perovskite oxides with different Ni doping contents. Electrochim Acta, 2020, 348: 136351

    Article  CAS  Google Scholar 

  52. Schichlein H, Müller AC, Voigts M, et al. Deconvolution of electrochemical impedance spectra for the identification of electrode reaction mechanisms in solid oxide fuel cells. J Appl Electrochem, 2002, 32: 875–882

    Article  CAS  Google Scholar 

  53. Zhang Y, Chen Y, Yan M, et al. Reconstruction of relaxation time distribution from linear electrochemical impedance spectroscopy. J Power Sources, 2015, 283: 464–477

    Article  CAS  Google Scholar 

  54. Adler SB. Factors governing oxygen reduction in solid oxide fuel cell cathodes. Chem Rev, 2004, 104: 4791–4844

    Article  CAS  Google Scholar 

  55. Adler SB, Lane JA, Steele BCH. Electrode kinetics of porous mixed-conducting oxygen electrodes. J Electrochem Soc, 1996, 143: 3554–3564

    Article  CAS  Google Scholar 

  56. Oz A, Singh K, Gelman D, et al. Understanding of oxygen reduction reaction on perovskite-type Ba0.5Sr0.5Fe0.91Al0.09O3−δ and Ba0.5Sr0.5Fe0.8Cu0.2O3−δ using AC impedance spectroscopy genetic programming. J Phys Chem C, 2018, 122: 15097–15107

    Article  CAS  Google Scholar 

  57. Ye L, Zhang M, Huang P, et al. Enhancing CO2 electrolysis through synergistic control of non-stoichiometry and doping to tune cathode surface structures. Nat Commun, 2017, 8: 14785

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation (52002249, 51402093 and 21706162), Guangdong Basic and Applied Basic Research Foundation (2019A1515110025 and 2017A 030313289), the Research Grant for Scientific Platform and Project of Guangdong Provincial Education Office (2019KTSCX151), China Postdoctoral Science Foundation (2020M682872) and Shenzhen Government’s Plan of Science and Technology (JCYJ201803005125247308) Technical support from the Instrumental Analysis Center of Shenzhen University (Xili Campus) is also appreciated.

Author information

Authors and Affiliations

Authors

Contributions

Fan L and Li Y conceived the idea, designed the experiments, analyzed the data and wrote the manuscript. Singh M and Zhuang Z performed the material microstructure characterization. Jing Y and Maliutina K participated in device optimization and data analysis. Li Y drafted the manuscript. He C and Fan L contributed to the final version of the manuscript. All authors contributed to the general discussion and reviewed the manuscript.

Corresponding author

Correspondence to Liangdong Fan  (范梁栋).

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary information

The XPS O 1s spectra, SEM images of typical cells, the temperature dependence of RSOC electrochemical performance, EIS fitting and DRT deconvolution results are available in the online version of the paper.

Yihang Li received his PhD in materials science from the University of Science and Technology of China (USTC) in 2019. In 2019, he joined Dr. Fan’s group as a postdoc at Shenzhen University. His main research focuses on rational design and fabrication of novel perovskite materials as electrodes for solid oxide fuel/electrolysis cells.

Liangdong Fan received his PhD one in energy technology from the Royal Institute of Technology (KTH, Sweden) in 2014 and another in chemical technology from Tianjin University in 2012. In 2015, Dr. Fan joined Shenzhen University as a Lecturer/Research Associate Professor (Principal Investigator). His current research interests are developing inorganic functional materials such as perovskite oxides for high-temperature fuel cells and low-temperature electrocatalysis applications.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Singh, M., Zhuang, Z. et al. Efficient reversible CO/CO2 conversion in solid oxide cells with a phase-transformed fuel electrode. Sci. China Mater. 64, 1114–1126 (2021). https://doi.org/10.1007/s40843-020-1531-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-020-1531-7

Keywords

Navigation