Skip to main content
Log in

Hierarchical flower-like spinel manganese-based oxide nanosheets for high-performance lithium ion battery

多级花状尖晶石锰基氧化物纳米片用于高性能锂离子电池

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Hierarchical flower-structured two-dimensional (2D) nanosheet is favorable for electrochemical reactions. The unique structure not only exposes the maximized active sites and shortens ion/electron diffusion channels, but also inhibits the structural strain during cycling processes. Herein, we report the hierarchical flower-like pure spinel manganese-based oxide nanosheets synthesized via a template-orientated strategy. The oriented template is fabricated by decomposition of carbonate obtained from “bubble reaction” via an alcohol-assisted hydrothermal process. The resultant spinel manganese-based oxide nanosheets simultaneously possess excellent rate capability and cycling stability. The high-voltage LiNi0.5Mn1.5O4 (LNMO-HF) has a uniform phase distribution without the common impurity phase LixNi1-xO2 and NixO. Besides, the LNMO-HF delivers high discharge capacity of 142.6 mA h g-1 with specific energy density of 660.7 W h kg-1 at 1 C under 55°C. More importantly, the template-orientated strategy can be extended to the synthesis of LiMn2O4 (LMO), which can achieve 88.12% capacity retention after 1000 cycles.

摘要

由二维(2D)纳米片组装成的多级花状结构有利于电化学反应. 这种独特的结构不仅可以暴露更多的活性位点、 缩短离子/电子扩散路径, 还可以确保良好的结构稳定性, 抑制重复循环过程中的结构应变. 本文通过模板导向策略合成多级花状纯相尖晶石锰基氧化物纳米片. 通过醇辅助水热法, 利用 “气泡反应” 原理获得的碳酸盐分解来制备取向模板. 最终产物尖晶石锰基氧化物纳米片同时满足优异的倍率性能和循环稳定性要求. 合成的分层花状高压LiNi0.5Mn1.5O4 (LNMO-HF)元素分布均匀, 且无杂相. LNMO-HF 可以提供142.6 mA h g−1的高放电容量, 在55°C、 1 C下, 其比能量密度为660.7 W h kg−1. 此外, 利用这种模板导向策略合成的 LiMn2O4 (LMO), 在1000次循环后, 其容量保持率可达88.12%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Crabtree G. The energy-storage revolution. Nature, 2015, 526: S92

    Article  Google Scholar 

  2. Shi JL, Xiao DD, Ge, M, et al. High-capacity cathode material with high voltage for Li-ion batteries. Adv Mater, 2018, 30: 1705575

    Article  Google Scholar 

  3. Lee, J, Kitchaev DA, Kwon DH, et al. Reversible Mn2+/Mn4+ double redox in lithium-excess cathode materials. Nature, 2018, 556: 185–190

    Article  Google Scholar 

  4. Hao, J, Liu, H, Ji, Y, et al. Synthesis and electrochemical performance of Sn-doped LiNi0.5Mn1.5O4 cathode material for high-voltage lithium-ion batteries. Sci China Mater, 2017, 60: 315–323

    Article  Google Scholar 

  5. Manthiram, A, Chemelewski, K, Lee ES. A perspective on the high-voltage LiMn1.5Ni0.5O4 spinel cathode for lithium-ion batteries. Energy Environ Sci, 2014, 7: 1339

    Article  Google Scholar 

  6. Xiao, J, Chen, X, Sushko PV, et al. High-performance LiNi0.5Mn1.5-O4 spinel controlled by Mn + concentration and site disorder. Adv Mater, 2012, 24: 2109–2116

    Article  Google Scholar 

  7. Zhang, X, Cheng, F, Yang, J, et al. LiNi0.5Mn1.5O4 porous nanorods as high-rate and long-life cathodes for Li-ion batteries. Nano Lett, 2013, 13: 2822–2825

    Article  Google Scholar 

  8. Yin, C, Zhou, H, Yang, Z, et al. Synthesis and electrochemical properties of LiNi0.5Mn1.5O4 for Li-ion batteries by the metal-organic framework method. ACS Appl Mater Interfaces, 2018, 10: 13625–13634

    Article  Google Scholar 

  9. Zhou, L, Zhao, D, Lou XWD. LiNi0.5Mn1.5O4 hollow structures as high-performance cathodes for lithium-ion batteries. Angew Chem Int Ed, 2012, 51: 239–241

    Article  Google Scholar 

  10. Wang, J, Nie, P, Xu, G, et al. High-voltage LiNi0.45Cr0.1Mn1.45O4 cathode with superlong cycle performance for wide temperature lithium-ion batteries. Adv Funct Mater, 2018, 28: 1704808

    Article  Google Scholar 

  11. Wu, Y, Zhang, J, Cao, C, et al. LiNi0.5Mn1.5O4 nano-submicro cubes as high-performance 5 V cathode materials for lithium-ion batteries. Electrochim Acta, 2017, 230: 293–298

    Article  Google Scholar 

  12. Lian, F, Zhang, F, Yang, L, et al. Constructing a heterostructural LiNi0.4Mn1.6O4_δ material from concentration-gradient framework to significantly improve its cycling performance. ACS Appl Mater Interfaces, 2017, 9: 15822–15829

    Article  Google Scholar 

  13. Zhu, C, Mu, X, van Aken PA, et al. Fast Li storage in MoS2-gra-phene-carbon nanotube nanocomposites: Advantageous functional integration of 0D, 1D, and 2D nanostructures. Adv Energy Mater, 2015, 5: 1401170

    Article  Google Scholar 

  14. Duan, J, Chen, S, Chambers BA, et al. 3D WS2 nanolayers@hetero-atom-doped graphene films as hydrogen evolution catalyst electrodes. Adv Mater, 2015, 27: 4234–4241

    Article  Google Scholar 

  15. Wang, Z, Rafai, S, Qiao, C, et al. Microwave-assisted synthesis of CuS hierarchical nanosheets as the cathode material for high-capacity rechargeable magnesium batteries. ACS Appl Mater Interfaces, 2019, 11: 7046–7054

    Article  Google Scholar 

  16. Rui, X, Zhao, X, Lu, Z, et al. Olivine-type nanosheets for lithium ion battery cathodes. ACS Nano, 2013, 7: 5637–5646

    Article  Google Scholar 

  17. Chen, L, Jiang, H, Hu, Y, et al. In-situ growth of ultrathin MoS2 nanosheets on sponge-like carbon nanospheres for lithium-ion batteries. Sci China Mater, 2018, 61: 1049–1056

    Article  Google Scholar 

  18. Zhao, L, Dong, B, Li, S, et al. Interdiffusion reaction-assisted hybridization of two-dimensional metal-organic frameworks and Ti3C2Tx nanosheets for electrocatalytic oxygen evolution. ACS Nano, 2017, 11: 5800–5807

    Article  Google Scholar 

  19. Zhu, Y, Cao, T, Li, Z, et al. Two-dimensional SnO2/graphene het-erostructures for highly reversible electrochemical lithium storage. Sci China Mater, 2018, 61: 1527–1535

    Article  Google Scholar 

  20. Chen, D, Peng, L, Yuan, Y, et al. Two-dimensional holey Co3O4 nanosheets for high-rate alkali-ion batteries: From rational synthesis to in situ probing. Nano Lett, 2017, 17: 3907–3913

    Article  Google Scholar 

  21. Zhu, Y, Cao C. A simple synthesis of two-dimensional ultrathin nickel cobaltite nanosheets for electrochemical lithium storage. Electrochim Acta, 2015, 176: 141–148

    Article  Google Scholar 

  22. Wang, W, Li, P, Zheng, H, et al. Ultrathin layered SnSe nanoplates for low voltage, high-rate, and long-life alkali-ion batteries. Small, 2017, 13: 1702228

    Article  Google Scholar 

  23. Zhu, Y, Cao, T, Cao, C, et al. A general synthetic strategy to monolayer graphene. Nano Res, 2018, 11: 3088–3095

    Article  Google Scholar 

  24. Wang, C, Li, S, Han, Y, et al. Assembly of LiMnPO4 nanoplates into microclusters as a high-performance cathode in lithium-ion batteries. ACS Appl Mater Interfaces, 2017, 9: 27618–27624

    Article  Google Scholar 

  25. Zhao, Y, Peng, L, Liu, B, et al. Single-crystalline LiFePO4 nanosheets for high-rate Li-ion batteries. Nano Lett, 2014, 14: 2849–2853

    Article  Google Scholar 

  26. Peng, L, Zhu, Y, Khakoo, U, et al. Self-assembled LiNi1/3Co1/3-Mn1/3O2 nanosheet cathodes with tunable rate capability. Nano Energy, 2015, 17: 36–42

    Article  Google Scholar 

  27. Tai, Z, Subramaniyam CM, Chou SL, et al. Few atomic layered lithium cathode materials to achieve ultrahigh rate capability in lithium-ion batteries. Adv Mater, 2017, 29: 1700605

    Article  Google Scholar 

  28. Zheng, H, Chen, X, Yang, Y, et al. Self-assembled LiNi1/3Co1/3-Mn1/3O2 nanosheet cathode with high electrochemical performance. ACS Appl Mater Interfaces, 2017, 9: 39560–39568

    Article  Google Scholar 

  29. Wu, Y, Cao, T, Wang, R, et al. A general strategy for the synthesis of two-dimensional holey nanosheets as cathodes for superior energy storage. J Mater Chem A, 2018, 6: 8374–8381

    Article  Google Scholar 

  30. Xu, M, Fei, L, Zhang, W, et al. Tailoring anisotropic Li-ion transport tunnels on orthogonally arranged Li-rich layered oxide nanoplates toward high-performance Li-ion batteries. Nano Lett, 2017, 17: 1670–1677

    Article  Google Scholar 

  31. Wu, Y, Cao, C, Zhu, Y, et al. Cube-shaped hierarchical LiNi1/3-Co1/3Mn1/3O2 with enhanced growth of nanocrystal planes as highperformance cathode materials for lithium-ion batteries. J Mater Chem A, 2015, 3: 15523–15528

    Article  Google Scholar 

  32. Wu, Y, Cao, C, Zhang, J, et al. Hierarchical LiMn2O4 hollow cubes with exposed {111} planes as high-power cathodes for lithium-ion batteries. ACS Appl Mater Interfaces, 2016, 8: 19567–19572

    Article  Google Scholar 

  33. Fan SS, Zhong, H, Yu HT, et al. Hollow and hierarchical Na2Li2Ti6O14 microspheres with high electrochemical performance as anode material for lithium-ion battery. Sci China Mater, 2017, 60: 427–437

    Article  Google Scholar 

  34. Huang ZD, Zhang TT, Lu, H, et al. Bimetal-organic-framework derived CoTiO3 mesoporous micro-prisms anode for superior stable power sodium ion batteries. Sci China Mater, 2018, 61: 1057–1066

    Article  Google Scholar 

  35. Zhao, Q, Wu, Y, Ma, X, et al. Mn oxidation state controllable spinel manganese-based intergrown cathode for excellent reversible lithium storage. J Power Sources, 2017, 359: 295–302

    Article  Google Scholar 

  36. Li, M, Yang, W, Huang, Y, et al. Hierarchical mesoporous Co3O4@ ZnCo2O4 hybrid nanowire arrays supported on Ni foam for highperformance asymmetric supercapacitors. Sci China Mater, 2018, 61: 1167–1176

    Article  Google Scholar 

  37. Hou, J, Cao, C, Idrees, F, et al. Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors. ACS Nano, 2015, 9: 2556–2564

    Article  Google Scholar 

  38. Yang, S, Chen, J, Liu, Y, et al. Preparing LiNi0.5Mn1.5O4 nanoplates with superior properties in lithium-ion batteries using bimetal-organic coordination-polymers as precursors. J Mater Chem A, 2014, 2: 9322–9330

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (21371023).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Cao C conceived the strategy. Zhao Q performed the experiments with support from Guo Z, Wu Y, Wang L, Han Z, Ma X, and Zhu Y. All authors contributed to the general discussion.

Corresponding author

Correspondence to Chuanbao Cao  (曹传宝).

Additional information

Conflict of interest The authors declare no conflict of interest.

Chuanbao Cao is currently the chief responsible professor of the School of Materials Science and Engineering, Director of Research Center of Materials Science of Beijing Institute of Technology, China. His research is focused on the electrochemical energy storage and conversion including electrode materials of lithium ion battery, supercapacitors, catalyst and photo-electrochemical materials. Until now, he has published more than 320 peer-review research papers, holds or has filed 50 patents and patent

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Q., Guo, Z., Wu, Y. et al. Hierarchical flower-like spinel manganese-based oxide nanosheets for high-performance lithium ion battery. Sci. China Mater. 62, 1385–1392 (2019). https://doi.org/10.1007/s40843-019-9442-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-019-9442-x

Keywords

Navigation