Skip to main content
Log in

Small onion-like BN leads to ultrafine-twinned cubic BN

洋葱式氮化硼粒径对纳米孪晶立方氮化硼组织结构和性能的影响

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Nanotwinned cubic boron nitride (nt-cBN) with remarkable hardness, toughness, and stability has attracted widespread attention due to its distinct scientific and industrial importance. The key for nt-cBN synthesis is to adopt an onion-like BN (oBN) nano-precursor and induce phase transition under high pressure. Here, we found that the size change of oBN used greatly affected the mechanical performance of products. With the precursor size decreasing from ~320 to 90 nm, the Vickers hardness of nanostructured products improved from 61 to 108 GPa, due to the fact that large oBN nanoparticles possessed more flattened, orderly and graphite-like shell layers, in sharp contrast to the highly wrinkled and imperfect layers in small-diameter nanoparticles, thus resulting in the apparent reduction of ultrafine-twin substructure in the synthetic products. This study reveals that only small oBN precursor could produce complete ultrafine nt-cBN with outstanding performance. A practical route was proposed to further improve the performance of this important material.

摘要

拥有极高硬度、 韧性和稳定性的纳米孪晶立方氮化硼(nt-cBN)在材料领域备受关注. 前期研究表明, 在高温高压条件下以洋葱式氮化硼(oBN)为前驱物是合成nt-cBN的关键. 本文研究发现, 前驱物oBN的粒径变化会显著影响最终产物的组织结构和机械性能. 随着前驱物oBN的粒径从~320 nm减小到~90 nm, 合成的纳米结构块材的硬度从61 GPa逐渐提高到108 GPa. 表明大粒径的oBN拥有和普通六方氮化硼类似的平整、有序的外层结构, 这与小粒径的oBN纳米粒子中存在大量弯曲、褶皱的氮化硼原子层及高密度层错的结构特点形成鲜明对比; 大粒径oBN前驱物中的这些有序结构显著减少了最终产物中超细孪晶亚结构的含量, 从而导致相应产物硬度的下降. 本研究表明, 只有粒径足够小的oBN前驱物才能合成出拥有高密度超细纳米孪晶结构且性能优异的nt-cBN. 为进一步提高此类纳米孪晶材料的性能提供了一种切实可行的方案.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wentorf Jr. RH. Cubic form of boron nitride. J Chem Phys, 1957, 26: 956

    Article  Google Scholar 

  2. Liew WYH, Yuan S, Ngoi BKA. Evaluation of machining performance of STAVAX with PCBN tools. Int J Adv Manufact Tech, 2004, 23: 11–19

    Article  Google Scholar 

  3. Wentorf RH, Devries RC, Bundy FP. Sintered superhard materials. Science, 1980, 208: 873–880

    Article  Google Scholar 

  4. Krauss AR, Auciello O, Gruen DM, et al. Ultrananocrystalline diamond thin films for MEMS and moving mechanical assembly devices. Diamond Related Mater, 2001, 10: 1952–1961

    Article  Google Scholar 

  5. Dubrovinskaia N, Solozhenko VL, Miyajima N, et al. Superhard nanocomposite of dense polymorphs of boron nitride: Noncarbon material has reached diamond hardness. Appl Phys Lett, 2007, 90: 101912

    Article  Google Scholar 

  6. Solozhenko VL, Kurakevych OO, Le Godec Y. Creation of nanostuctures by extreme conditions: High-pressure synthesis of ultrahard nanocrystalline cubic boron nitride. Adv Mater, 2012, 24: 1540–1544

    Article  Google Scholar 

  7. Sumiya H, Uesaka S, Satoh S. Mechanical properties of high purity polycrystalline cBN synthesized by direct conversion sintering method. J Mater Sci, 2000, 35: 1181–1186

    Article  Google Scholar 

  8. Dub SN, Petrusha IA. Mechanical properties of polycrystalline cBN obtained from pyrolytic gBN by direct transformation technique. High Pressure Res, 2006, 26: 71–77

    Article  Google Scholar 

  9. Tian Y, Xu B, Yu D, et al. Ultrahard nanotwinned cubic boron nitride. Nature, 2013, 493: 385–388

    Article  Google Scholar 

  10. Petch NJ. The cleavage strength of polycrystals. J Iron Steel Inst, 1953, 174: 25–28

    Google Scholar 

  11. Hall EO. The deformation and ageing of mild steel: III Discussion of results. Proc Phys Soc B, 1951, 64: 747–753

    Article  Google Scholar 

  12. Lu L, Chen X, Huang X, et al. Revealing the maximum strength in nanotwinned copper. Science, 2009, 323: 607–610

    Article  Google Scholar 

  13. Huang Q, Yu D, Xu B, et al. Nanotwinned diamond with unprecedented hardness and stability. Nature, 2014, 510: 250–253

    Article  Google Scholar 

  14. Hu W, Wen B, Huang Q, et al. Role of plastic deformation in tailoring ultrafine microstructure in nanotwinned diamond for enhanced hardness. Sci China Mater, 2017, 60: 178–185

    Article  Google Scholar 

  15. Zhao Z, Xu B, Tian Y. Recent advances in superhard materials. Annu Rev Mater Res, 2016, 46: 383–406

    Article  Google Scholar 

  16. Sumiya H, Harano K, Ishida Y. Mechanical properties of nanopolycrystalline cBN synthesized by direct conversion sintering under HPHT. Diamond Related Mater, 2014, 41: 14–19

    Article  Google Scholar 

  17. Kurakevych OO, Solozhenko VL. High-pressure design of advanced BN-based materials. Molecules, 2016, 21: 1399

    Article  Google Scholar 

  18. San-Miguel A. Nanomaterials under high-pressure. Chem Soc Rev, 2006, 35: 876

    Article  Google Scholar 

  19. Tang C, Bando Y, Huang Y, et al. Synthetic routes and formation mechanisms of spherical boron nitride nanoparticles. Adv Funct Mater, 2008, 18: 3653–3661

    Article  Google Scholar 

  20. Leinenweber KD, Tyburczy JA, Sharp TG, et al. Cell assemblies for reproducible multi-anvil experiments (the COMPRES assemblies). Am Miner, 2012, 97: 353–368

    Article  Google Scholar 

  21. Wang Y, Rivers M, Sutton S, et al. The large-volume high-pressure facility at GSECARS: A “Swiss-army-knife” approach to synchrotron- based experimental studies. Phys Earth Planet Inter, 2009, 174: 270–281

    Article  Google Scholar 

  22. Solozhenko VL, Dub SN, Novikov NV. Mechanical properties of cubic BC2N, a new superhard phase. Diamond Related Mater, 2001, 10: 2228–2231

    Article  Google Scholar 

  23. Evans AG, Charles EA. Fracture toughness determinations by indentation. J Am Ceramic Soc, 1976, 59: 371–372

    Article  Google Scholar 

  24. He LL, Akaishi M, Horiuchi S. Structural evolution in boron nitrides during the hexagonal-cubic phase transition under high pressure at high temperature. Microsc Res Tech, 1998, 40: 243–250

    Article  Google Scholar 

  25. Xiong C, Tu W. Synthesis of water-dispersible boron nitride nanoparticles. Eur J Inorg Chem, 2014, 19: 3010–3015

    Article  Google Scholar 

  26. Zhao Z, Yang Z, Wen Y, Wang Y. Facile synthesis and characterization of hexagonal boron nitride nanoplates by two-step route. J Am Ceram Soc, 2011, 94: 4496–4501

    Article  Google Scholar 

  27. Sachdev H. Influence of impurities on the morphology and Raman spectra of cubic boron nitride. Diamond Related Mater, 2003, 12: 1275–1286

    Article  Google Scholar 

  28. Huang JY, Zhu YT. Advances in the synthesis and characterization of boron nitride. DDF, 2000, 186-187: 1–32

    Article  Google Scholar 

  29. Britun VF, Kurdyumov AV. Mechanisms of martensitic transformations in boron nitride and conditions of their development. High Pressure Res, 2000, 17: 101–111

    Article  Google Scholar 

  30. Zheng S, Zhang R, Huang R, et al. Structure and energetics of nanotwins in cubic boron nitrides. Appl Phys Lett, 2016, 109: 081901

    Article  Google Scholar 

  31. Chen CL, Huang R, Wang Z, et al. Microstructures and grain boundaries of cubic boron nitrides. Diamond Related Mater, 2013, 32: 27–31

    Article  Google Scholar 

  32. Oku T, Hiraga K, Matsuda T, et al. Twin structures of rhombohedral and cubic boron nitride prepared by chemical vapor deposition method. Diamond Related Mater, 2003, 12: 1138–1145

    Article  Google Scholar 

  33. Tian Y, Xu B, Yu D, et al. Tian et al. reply. Nature, 2013, 502: E2–E3

    Article  Google Scholar 

  34. Chaudhri MM, Lim YY. Harder than diamond? Just fiction. Nat Mater, 2005, 4: 4

    Article  Google Scholar 

  35. Sumiya H, Ishida Y, Arimoto K, et al. Real indentation hardness of nano-polycrystalline cBN synthesized by direct conversion sintering under HPHT. Diamond Related Mater, 2014, 48: 47–51

    Article  Google Scholar 

  36. Brookes CA, Moxley B. A pentagonal indenter for hardness measurements. J Phys E-Sci Instrum, 1975, 8: 456–460

    Article  Google Scholar 

  37. Corrigan FR, Bundy FP. Direct transitions among the allotropic forms of boron nitride at high pressures and temperatures. J Chem Phys, 1975, 63: 3812–3820

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support of the National Natural Science Foundation of China (51472213, 51332005, 51572235, 51722209 and 51525205) and the National Key R&D Program of China. Zhao Z also acknowledges the 100 Talents Plan of Hebei Province (E2016100013), the Natural Science Foundation for Distinguished Young Scholars of Hebei Province of China (E2018203349), and the Key R&D Program of Hebei Province of China (17211110D). Luo K acknowledges China Postdoctoral Science Foundation (2017M620097).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhisheng Zhao  (赵智胜) or Julong He  (何巨龙).

Additional information

Kun Luo is a postdoctoral fellow at the School of Science, Yanshan University. He received his PhD degree from Yanshan University in 2017. His research interest includes the design and synthesis of novel metastable materials under HPHT.

Zhisheng Zhao is a professor at the College of Materials Science and Engineering, Yanshan University. He received his PhD degree from Yanshan University in 2012. His research interest focuses on the design and synthesis of novel metastable materials and theoretical calculation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, K., Zhang, Y., Yu, D. et al. Small onion-like BN leads to ultrafine-twinned cubic BN. Sci. China Mater. 62, 1169–1176 (2019). https://doi.org/10.1007/s40843-019-9409-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-019-9409-1

Keywords

Navigation