Skip to main content
Log in

Recent advances in luminescent metal-organic frameworks for chemical sensors

基于荧光金属有机框架的化学检测器研究进展

  • Reviews
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Metal-organic frameworks (MOFs), comprised of metal ions/clusters and organic ligands, have shown promising potential for numerous applications. Recently, luminescent MOFs (LMOFs), with the superiorities of inherent crystallinity, definite structure, tunable pore, and multiple functionalizations, have bloomed out as sensors for the detection. Numerous LMOFs have been synthesized and used for sensing applications. Herein, the recent advances of LMOFs as chemical sensors for the detection of diverse targets, including metal ions, anions, small molecules, volatile organic compounds, nitro-aromatic explosives, gases, and biomolecules, have been summarized. Additionally, the detection mechanisms and the relationship between structure and properties of the materials are also illustrated. This review could be useful reference for the rational construction and sensing applications of LMOFs.

摘要

由金属离子/簇与有机配体构筑的金属有机框架 (metal-organic frameworks, MOFs) 近年来受到广泛关注.. 作为一类典型的 MOFs材料, 荧光MOFs(LMOFs)因具有结晶度高、结构多样、孔 隙率可调、孔道易修饰等特点在化学检测领域展现出重要的应用 前景. 迄今为止, 大量的LMOFs已被合成并用于多种物质检测. 本 文综述了 LMOFs对金属阳离子、阴离子、小分子、有机物、爆炸 物、气体、生物分子等物质检测的近期研究进展, 总结了荧光检 测机理和结构-性能关系, 为后续定向构筑性能优异的新型LMOFs 材料提供参考.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang JP, Zhou HL, Zhou DD, et al. Controlling flexibility of metal-organic frameworks. Natl Sci Rev, 2018, 5: 907–919

    Google Scholar 

  2. Li JR, Sculley J, Zhou HC. Metal-organic frameworks for separations. Chem Rev, 2012, 112: 869–932

    CAS  Google Scholar 

  3. Fu D, Xu Y, Zhao M, et al. Enhancement of gas-framework interaction in a metal-organic framework by cavity modification. Sci Bull, 2016, 61: 1255–1259

    CAS  Google Scholar 

  4. Pan L, Parker B, Huang X, et al. Zn(tbip)(H2tbip= 5-tert-butyl isophthalic acid): A Highly stable guest-free microporous metal organic framework with unique gas separation capability. J Am Chem Soc, 2006, 128: 4180–4181

    CAS  Google Scholar 

  5. Matsuda R, Kitaura R, Kitagawa S, et al. Highly controlled acetylene accommodation in a metal-organic microporous material. Nature, 2005, 436: 238–241

    CAS  Google Scholar 

  6. Ma L, Abney C, Lin W. Enantioselective catalysis with homochiral metal-organic frameworks. Chem Soc Rev, 2009, 38: 1248–1256

    CAS  Google Scholar 

  7. Zheng Y, Qiao SZ. Metal-organic framework assisted synthesis of single-atom catalysts for energy applications. Natl Sci Rev, 2018, 5: 626–627

    Google Scholar 

  8. Shultz AM, Farha OK, Hupp JT, et al. A catalytically active, permanently microporous MOF with metalloporphyrin struts. J Am Chem Soc, 2009, 131: 4204–4205

    CAS  Google Scholar 

  9. Zhang K, Guo W, Liang Z, et al. Metal-organic framework based nanomaterials for electrocatalytic oxygen redox reaction. Sci China Chem, 2019, 62: 417–429

    CAS  Google Scholar 

  10. Yoon M, Srirambalaji R, Kim K. Homochiral metal-organic frameworks for asymmetric heterogeneous catalysis. Chem Rev, 2012, 112: 1196–1231

    CAS  Google Scholar 

  11. Suh MP, Park HJ, Prasad TK, et al. Hydrogen storage in metal-organic frameworks. Chem Rev, 2012, 112: 782–835

    CAS  Google Scholar 

  12. Li B, Chen B. A flexible metal-organic framework with double interpenetration for highly selective CO2 capture at room temperature. Sci China Chem, 2016, 59: 965–969

    CAS  Google Scholar 

  13. Zhang XF, Yang Q, Zhao JP, et al. Three interpenetrated copper (II) coordination polymers based on a V-shaped ligand: Synthesis, structures, sorption and magnetic properties. Sci China Chem, 2011, 54: 1446–1453

    CAS  Google Scholar 

  14. Férey G, Serre C, Devic T, et al. Why hybrid porous solids capture greenhouse gases? Chem Soc Rev, 2011, 40: 550–562

    Google Scholar 

  15. Bu XH, Tong ML, Chang HC, et al. A neutral 3D copper coordination polymer showing 1D open channels and the first interpenetrating NbO-type network. Angew Chem Int Ed, 2004, 43: 192–195

    CAS  Google Scholar 

  16. Horcajada P, Gref R, Baati T, et al. Metal-organic frameworks in biomedicine. Chem Rev, 2012, 112: 1232–1268

    CAS  Google Scholar 

  17. Della Rocca J, Liu D, Lin W. Nanoscale metal-organic frameworks for biomedical imaging and drug delivery. Acc Chem Res, 2011, 44: 957–968

    CAS  Google Scholar 

  18. Kreno LE, Leong K, Farha OK, et al. Metal-organic framework materials as chemical sensors. Chem Rev, 2012, 112: 1105–1125

    CAS  Google Scholar 

  19. Cui Y, Yue Y, Qian G, et al. Luminescent functional metal-organic frameworks. Chem Rev, 2012, 112: 1126–1162

    CAS  Google Scholar 

  20. Qi XL, Lin RB, Chen Q, et al. A flexible metal azolate framework with drastic luminescence response toward solvent vapors and carbon dioxide. Chem Sci, 2011, 2: 2214–2218

    CAS  Google Scholar 

  21. An J, Shade CM, Chengelis-Czegan DA, et al. Zinc-adeninate metal-organic framework for aqueous encapsulation and sensitization of near-infrared and visible emitting lanthanide cations. J Am Chem Soc, 2011, 133: 1220–1223

    CAS  Google Scholar 

  22. Takashima Y, Martínez VM, Furukawa S, et al. Molecular decoding using luminescence from an entangled porous framework. Nat Commun, 2011, 2: 168–176

    Google Scholar 

  23. Zhang Y, Yuan S, Day G, et al. Luminescent sensors based on metal-organic frameworks. Coord Chem Rev, 2018, 354: 28–45

    CAS  Google Scholar 

  24. Wang T, Jia Y, Chen Q, et al. A new luminescent metal-organic framework for selective sensing of nitroaromatic explosives. Sci China Chem, 2016, 59: 959–964

    CAS  Google Scholar 

  25. Allendorf MD, Bauer CA, Bhakta RK, et al. Luminescent metal-organic frameworks. Chem Soc Rev, 2009, 38: 1330–1352

    CAS  Google Scholar 

  26. Yaghi OM, O’Keeffe M, Ockwig NW, et al. Reticular synthesis and the design of new materials. Nature, 2003, 423: 705–714

    CAS  Google Scholar 

  27. Hu Z, Deibert BJ, Li J. Luminescent metal-organic frameworks for chemical sensing and explosive detection. Chem Soc Rev, 2014, 43: 5815–5840

    CAS  Google Scholar 

  28. Evans JD, Sumby CJ, Doonan CJ. Post-synthetic metalation of metal-organic frameworks. Chem Soc Rev, 2014, 43: 5933–5951

    CAS  Google Scholar 

  29. Lu Z, Wu M, Wu S, et al. Modulating the optical properties of the AIE fluophor confined within UiO-66′s nanochannels for chemical sensing. Nanoscale, 2016, 8: 17489–17495

    CAS  Google Scholar 

  30. Mahata P, Mondal SK, Singha DK, et al. Luminescent rare-earth-based MOFs as optical sensors. Dalton Trans, 2017, 46: 301–328

    CAS  Google Scholar 

  31. Müller-Buschbaum K, Beuerle F, Feldmann C. MOF based luminescence tuning and chemical/physical sensing. Microporous Mesoporous Mater, 2015, 216: 171–199

    Google Scholar 

  32. Banerjee D, Hu Z, Li J. Luminescent metal-organic frameworks as explosive sensors. Dalton Trans, 2014, 43: 10668–10685

    CAS  Google Scholar 

  33. Liu ZQ, Huang YQ, Sun WY. Progress in fluorescent recognition and sensing of solvent and small organic molecules based on metal-organic frameworks. Chin J Inorg Chem, 2017, 33: 1959–1969

    CAS  Google Scholar 

  34. Li J, Wang X, Zhao G, et al. Metal-organic framework-based materials: superior adsorbents for the capture of toxic and radioactive metal ions. Chem Soc Rev, 2018, 47: 2322–2356

    CAS  Google Scholar 

  35. Bricks JL, Kovalchuk A, Trieflinger C, et al. On the development of sensor molecules that display FeIII-amplified fluorescence. J Am Chem Soc, 2005, 127: 13522–13529

    CAS  Google Scholar 

  36. Brugnara C. Iron deficiency and erythropoiesis: new diagnostic approaches. Clin Chem, 2003, 49: 1573–1578

    CAS  Google Scholar 

  37. Liu ZQ, Chen K, Zhao Y, et al. Structural diversity and sensing properties of metal-organic frameworks with multicarboxylate and 1H-imidazol-4-yl-containing ligands. Cryst Growth Des, 2018, 18: 1136–1146

    CAS  Google Scholar 

  38. Zhao XL, Tian D, Gao Q, et al. A chiral lanthanide metal-organic framework for selective sensing of Fe(III) ions. Dalton Trans, 2016, 45: 1040–1046

    CAS  Google Scholar 

  39. Wen RM, Han SD, Ren GJ, et al. A flexible zwitterion ligand based lanthanide metal-organic framework for luminescence sensing of metal ions and small molecules. Dalton Trans, 2015, 44: 10914–10917

    CAS  Google Scholar 

  40. Wang L, Yao ZQ, Ren GJ, et al. A luminescent metal-organic framework for selective sensing of Fe3+ with excellent recyclability. Inorg Chem Commun, 2016, 65: 9–12

    CAS  Google Scholar 

  41. Zhao D, Liu XH, Zhao Y, et al. Luminescent Cd(II)-organic frameworks with chelating NH2 sites for selective detection of Fe(III) and antibiotics. J Mater Chem A, 2017, 5: 15797–15807

    CAS  Google Scholar 

  42. Li YW, Li JR, Wang LF, et al. Microporous metal-organic frameworks with open metal sites as sorbents for selective gas adsorption and fluorescence sensors for metal ions. J Mater Chem A, 2013, 1: 495–499

    CAS  Google Scholar 

  43. Yang L, Lian C, Li X, et al. Highly selective bifunctional luminescent sensor toward nitrobenzene and Cu2+ ion based on microporous metal-organic frameworks: Synthesis, structures, and properties. ACS Appl Mater Interfaces, 2017, 9: 17208–17217

    CAS  Google Scholar 

  44. Zhou X, Cheng J, Li L, et al. A europium(III) metal-organic framework as ratiometric turn-on luminescent sensor for Al3+ ions. Sci China Mater, 2018, 61: 752–757

    CAS  Google Scholar 

  45. Yu MH, Hu TL, Bu XH. A metal-organic framework as a “turn on” fluorescent sensor for aluminum ions. Inorg Chem Front, 2017, 4: 256–260

    CAS  Google Scholar 

  46. Wang R, Liu X, Huang A, et al. Unprecedented solvent-dependent sensitivities in highly efficient detection of metal ions and nitroaromatic compounds by a fluorescent barium metal-organic framework. Inorg Chem, 2016, 55: 1782–1787

    CAS  Google Scholar 

  47. Chen WM, Meng XL, Zhuang GL, et al. A superior fluorescent sensor for Al3+ and UO2 2+ based on a Co(II) metal-organic framework with exposed pyrimidyl Lewis base sites. J Mater Chem A, 2017, 5: 13079–13085

    CAS  Google Scholar 

  48. Li YP, Zhu XH, Li SN, et al. Highly selective and sensitive turn-off-on fluorescent probes for sensing Al3+ ions designed by regulating the excited-state intramolecular proton transfer process in metal-organic frameworks. ACS Appl Mater Interfaces, 2019, 11: 11338–11348

    CAS  Google Scholar 

  49. Zhang Q, Wang J, Kirillov AM, et al. Multifunctional Ln-MOF luminescent probe for efficient sensing of Fe3+, Ce3+, and acetone. ACS Appl Mater Interfaces, 2018, 10: 23976–23986

    CAS  Google Scholar 

  50. Samanta P, Desai AV, Sharma S, et al. Selective recognition of Hg2+ ion in water by a functionalized metal-organic framework (MOF) based chemodosimeter. Inorg Chem, 2018, 57: 2360–2364

    CAS  Google Scholar 

  51. Pankajakshan A, Kuznetsov D, Mandal S. Ultrasensitive detection of Hg(II) ions in aqueous medium using zinc-based metal-organic framework. Inorg Chem, 2019, 58: 1377–1381

    CAS  Google Scholar 

  52. Mon M, Bruno R, Ferrando-Soria J, et al. Metal-organic framework technologies for water remediation: towards a sustainable ecosystem. J Mater Chem A, 2018, 6: 4912–4947

    CAS  Google Scholar 

  53. Bolisetty S, Peydayesh M, Mezzenga R. Sustainable technologies for water purification from heavy metals: review and analysis. Chem Soc Rev, 2019, 48: 463–487

    CAS  Google Scholar 

  54. Yao ZQ, Li GY, Xu J, et al. A water-stable luminescent ZnII metal-organic framework as chemosensor for high-efficiency detection of CrVI-anions (Cr2O7 2− and CrO4 2−) in aqueous solution. Chem Eur J, 2018, 24: 3192–3198

    CAS  Google Scholar 

  55. He T, Zhang YZ, Kong XJ, et al. Zr(V)-based metal-organic framework with T-shaped ligand: Unique structure, high stability, selective detection, and rapid adsorption of Cr2O7 2− in water. ACS Appl Mater Interfaces, 2018, 10: 16650–16659

    CAS  Google Scholar 

  56. Lustig WP, Mukherjee S, Rudd ND, et al. Metal-organic frameworks: functional luminescent and photonic materials for sensing applications. Chem Soc Rev, 2017, 46: 3242–3285

    CAS  Google Scholar 

  57. Chen YQ, Li GR, Chang Z, et al. A Cu(I) metal-organic framework with 4-fold helical channels for sensing anions. Chem Sci, 2013, 4: 3678–3682

    CAS  Google Scholar 

  58. Ma JP, Yu Y, Dong YB. Fluorene-based Cu(II)-MOF: a visual colorimetric anion sensor and separator based on an anion-exchange approach. Chem Commun, 2012, 48: 2946–2948

    CAS  Google Scholar 

  59. Manna B, Joarder B, Desai AV, et al. Anion-responsive tunable bulk-phase homochirality and luminescence of a cationic framework. Chem Eur J, 2014, 20: 12399–12404

    CAS  Google Scholar 

  60. Shi PF, Hu HC, Zhang ZY, et al. Heterometal-organic frameworks as highly sensitive and highly selective luminescent probes to detect I ions in aqueous solutions. Chem Commun, 2015, 51: 3985–3988

    CAS  Google Scholar 

  61. Wong KL, Law GL, Yang YY, et al. A highly porous luminescent terbium-organic framework for reversible anion sensing. Adv Mater, 2006, 18: 1051–1054

    CAS  Google Scholar 

  62. Chen B, Wang L, Zapata F, et al. A luminescent microporous metal organic framework for the recognition and sensing of anions. J Am Chem Soc, 2008, 130: 6718–6719

    CAS  Google Scholar 

  63. Yang ZR, Wang MM, Wang XS, et al. Boric-acid-functional lanthanide metal-organic frameworks for selective ratiometric fluorescence detection of fluoride ions. Anal Chem, 2017, 89: 1930–1936

    CAS  Google Scholar 

  64. Ji G, Gao X, Zheng T, et al. Postsynthetic metalation metal-organic framework as a fluorescent probe for the ultrasensitive and reversible detection of PO4 3− ions. Inorg Chem, 2018, 57: 10525–10532

    CAS  Google Scholar 

  65. Chen Q, Cheng J, Wang J, et al. A fluorescent Eu(III) MOF for highly selective and sensitive sensing of picric acid. Sci China Chem, 2019, 62: 205–211

    CAS  Google Scholar 

  66. Tian D, Chen RY, Xu J, et al. A three-dimensional metal-organic framework for selective sensing of nitroaromatic compounds. APL Mater, 2014, 2: 124111–124117

    Google Scholar 

  67. Sun XC, Wang Y, Lei Y. Fluorescence based explosive detection: From mechanisms to sensory materials. Chem Soc Rev, 2015, 44: 8019–8061

    CAS  Google Scholar 

  68. Pramanik S, Zheng C, Zhang X, et al. New microporous metal-organic framework demonstrating unique selectivity for detection of high explosives and aromatic compounds. J Am Chem Soc, 2011, 133: 4153–4155

    CAS  Google Scholar 

  69. Buragohain A, Yousufuddin M, Sarma M, et al. 3D luminescent amide-functionalized cadmium tetrazolate framework for selective detection of 2,4,6-trinitrophenol. Cryst Growth Des, 2016, 16: 842–851

    CAS  Google Scholar 

  70. Zhang L, Kang Z, Xin X, et al. Metal-organic frameworks based luminescent materials for nitroaromatics sensing. CrystEngComm, 2016, 18: 193–206

    CAS  Google Scholar 

  71. Nagarkar SS, Desai AV, Samanta P, et al. Aqueous phase selective detection of 2,4,6-trinitrophenol using a fluorescent metal-organic framework with a pendant recognition site. Dalton Trans, 2015, 44: 15175–15180

    CAS  Google Scholar 

  72. Mukherjee S, Desai AV, Manna B, et al. Exploitation of guest accessible aliphatic amine functionality of a metal-organic framework for selective detection of 2,4,6-trinitrophenol (TNP) in water. Cryst Growth Des, 2015, 15: 4627–4634

    CAS  Google Scholar 

  73. Liu Y, Zhao Y, Liu XH, et al. Novel metal-organic frameworks with high stability for selectively sensing nitroaromatics. Dalton Trans, 2018, 47: 15399–15404

    CAS  Google Scholar 

  74. Lan A, Li K, Wu H, et al. A luminescent microporous metal-organic framework for the fast and reversible detection of high explosives. Angew Chem Int Ed, 2009, 48: 2334–2338

    CAS  Google Scholar 

  75. Tian D, Li Y, Chen RY, et al. A luminescent metal-organic framework demonstrating ideal detection ability for nitroaromatic explosives. J Mater Chem A, 2014, 2: 1465–1470

    CAS  Google Scholar 

  76. Liu XJ, Wang X, Xu JL, et al. Selective gas adsorption and fluorescence sensing response of a Zn(II) metal-organic framework constructed by a mixed-ligand strategy. Dalton Trans, 2017, 46: 4893–4897

    CAS  Google Scholar 

  77. Deng Y, Chen N, Li Q, et al. Highly fluorescent metal-organic frameworks based on a benzene-cored tetraphenylethene derivative with the ability to detect 2,4,6-trinitrophenol in water. Cryst Growth Des, 2017, 17: 3170–3177

    CAS  Google Scholar 

  78. Chen DM, Zhang NN, Liu CS, et al. Dual-emitting dye@MOF composite as a self-calibrating sensor for 2,4,6-trinitrophenol. ACS Appl Mater Interfaces, 2017, 9: 24671–24677

    CAS  Google Scholar 

  79. Rouhani F, Morsali A, Retailleau P. Simple one-pot preparation of a rapid response AIE fluorescent metal-organic framework. ACS Appl Mater Interfaces, 2018, 10: 36259–36266

    CAS  Google Scholar 

  80. Slater JM, Watt EJ, Freeman NJ, et al. Gas and vapour detection with poly(pyrrole) gas sensors. Analyst, 1992, 117: 1265–1270

    CAS  Google Scholar 

  81. Aggazzotti G, Fantuzzi G, Righi E, et al. Blood and breath analyses as biological indicators of exposure to trihalomethanes in indoor swimming pools. Sci Total Environ, 1998, 217: 155–163

    CAS  Google Scholar 

  82. Mølhave L, Bach B, Pedersen OF. Human reactions to low concentrations of volatile organic compounds. Environ Int, 1986, 12: 167–175

    Google Scholar 

  83. Guo H, Lee SC, Chan LY, et al. Risk assessment of exposure to volatile organic compounds in different indoor environments. Environ Res, 2004, 94: 57–66

    CAS  Google Scholar 

  84. Wang F, Dong C, Wang Z, et al. Fluorescence detection of anilines and photocatalytic degradation of rhodamine B by a multifunctional metal-organic framework. Eur J Inorg Chem, 2014, 2014: 6239–6245

    CAS  Google Scholar 

  85. Wang H, Lustig WP, Li J. Sensing and capture of toxic and hazardous gases and vapors by metal-organic frameworks. Chem Soc Rev, 2018, 47: 4729–4756

    CAS  Google Scholar 

  86. Xie BP, Qiu GH, Hu PP, et al. Simultaneous detection of Dengue and Zika virus RNA sequences with a three-dimensional Cubased zwitterionic metal-organic framework, comparison of single and synchronous fluorescence analysis. Sensor Actuat B-Chem, 2018, 254: 1133–1140

    CAS  Google Scholar 

  87. Leidinger M, Rieger M, Sauerwald T, et al. Integrated pre-concentrator gas sensor microsystem for ppb level benzene detection. Sensor Actuat B-Chem, 2016, 236: 988–996

    CAS  Google Scholar 

  88. Yan B. Lanthanide-functionalized metal-organic framework hybrid systems to create multiple luminescent centers for chemical sensing. Acc Chem Res, 2017, 50: 2789–2798

    CAS  Google Scholar 

  89. Marini A, Munoz-Losa A, Biancardi A, et al. What is solvatochromism? J Phys Chem B, 2010, 114: 17128–17135

    CAS  Google Scholar 

  90. Janzen MC, Ponder JB, Bailey DP, et al. Colorimetric sensor arrays for volatile organic compounds. Anal Chem, 2006, 78: 3591–3600

    CAS  Google Scholar 

  91. Lan A, Li K, Wu H, et al. RPM3: A multifunctional microporous MOF with recyclable framework and high H2 binding energy. Inorg Chem, 2009, 48: 7165–7173

    CAS  Google Scholar 

  92. Liu XG, Wang H, Chen B, et al. A luminescent metal-organic framework constructed using a tetraphenylethene-based ligand for sensing volatile organic compounds. Chem Commun, 2015, 51: 1677–1680

    CAS  Google Scholar 

  93. Wang F, Liu W, Teat SJ, et al. Chromophore-immobilized luminescent metal-organic frameworks as potential lighting phosphors and chemical sensors. Chem Commun, 2016, 52: 10249–10252

    CAS  Google Scholar 

  94. Shustova NB, Ong TC, Cozzolino AF, et al. Phenyl ring dynamics in a tetraphenylethylene-bridged metal-organic framework: Implications for the mechanism of aggregation-induced emission. J Am Chem Soc, 2012, 134: 15061–15070

    CAS  Google Scholar 

  95. Zhang M, Feng G, Song Z, et al. Two-dimensional metal-organic framework with wide channels and responsive turn-on fluorescence for the chemical sensing of volatile organic compounds. J Am Chem Soc, 2014, 136: 7241–7244

    CAS  Google Scholar 

  96. Zhao X, Li Y, Chang Z, et al. A four-fold interpenetrated metal-organic framework as a fluorescent sensor for volatile organic compounds. Dalton Trans, 2016, 45: 14888–14892

    CAS  Google Scholar 

  97. Hong Y, Lam JWY, Tang BZ. Aggregation-induced emission. Chem Soc Rev, 2011, 40: 5361

    CAS  Google Scholar 

  98. Parrott EPJ, Tan NY, Hu R, et al. Direct evidence to support the restriction of intramolecular rotation hypothesis for the mechanism of aggregation-induced emission: temperature resolved terahertz spectra of tetraphenylethene. Mater Horiz, 2014, 1: 251–258

    CAS  Google Scholar 

  99. Chen DM, Zhang NN, Liu CS, et al. Template-directed synthesis of a luminescent Tb-MOF material for highly selective Fe3+ and Al3+ ion detection and VOC vapor sensing. J Mater Chem C, 2017, 5: 2311–2317

    CAS  Google Scholar 

  100. Mallick A, El-Zohry AM, Shekhah O, et al. Unprecedented ultralow detection limit of amines using a thiadiazole-functionalized Zr(IV)-based metal-organic framework. J Am Chem Soc, 2019, 141: 7245–7249

    CAS  Google Scholar 

  101. Zhao H, Ni J, Zhang JJ, et al. A trichromatic MOF composite for multidimensional ratiometric luminescent sensing. Chem Sci, 2018, 9: 2918–2926

    CAS  Google Scholar 

  102. Zhao D, Cui Y, Yang Y, et al. Sensing-functional luminescent metal-organic frameworks. CrystEngComm, 2016, 18: 3746–3759

    CAS  Google Scholar 

  103. Jia YY, Zhang YH, Xu J, et al. A high-performance “sweeper” for toxic cationic herbicides: an anionic metal-organic framework with a tetrapodal cage. Chem Commun, 2015, 51: 17439–17442

    CAS  Google Scholar 

  104. Liu ZQ, Zhao Y, Deng Y, et al. Selectively sensing and adsorption properties of nickel(II) and cadmium(II) architectures with rigid 1H-imidazol-4-yl containing ligands and 1,3,5-tri(4-carboxyphenyl)benzene. Sensor Actuat B-Chem, 2017, 250: 179–188

    CAS  Google Scholar 

  105. Bai Y, He G, Zhao Y, et al. Porous material for absorption and luminescent detection of aromatic molecules in water. Chem Commun, 2006, 43: 1530

    Google Scholar 

  106. Chen B, Yang Y, Zapata F, et al. Luminescent open metal sites within a metal-organic framework for sensing small molecules. Adv Mater, 2007, 19: 1693–1696

    CAS  Google Scholar 

  107. Guo Z, Xu H, Su S, et al. A robust near infrared luminescent ytterbium metal-organic framework for sensing of small molecules. Chem Commun, 2011, 47: 5551–5553

    CAS  Google Scholar 

  108. Xiao Y, Wang L, Cui Y, et al. Molecular sensing with lanthanide luminescence in a 3D porous metal-organic framework. J Alloys Compd, 2009, 484: 601–604

    CAS  Google Scholar 

  109. Ma D, Wang W, Li Y, et al. In situ 2,5-pyrazinedicarboxylate and oxalate ligands synthesis leading to a microporous europium-organic framework capable of selective sensing of small molecules. CrystEngComm, 2010, 12: 4372–4377

    CAS  Google Scholar 

  110. Lin YW, Jian BR, Hsu KF, et al. Synthesis and characterization of three ytterbium coordination polymers featuring various cationic species and a luminescence study of a terbium analogue with open channels. Inorg Chem, 2010, 49: 2316–2324

    CAS  Google Scholar 

  111. Liu XJ, Zhang YH, Chang Z, et al. A water-stable metal-organic framework with a double-helical structure for fluorescent sensing. Inorg Chem, 2016, 55: 7326–7328

    CAS  Google Scholar 

  112. Li Y, Zhang S, Song D. A luminescent metal-organic framework as a turn-on sensor for DMF vapor. Angew Chem Int Ed, 2013, 52: 710–713

    CAS  Google Scholar 

  113. Zhu WH, Wang ZM, Gao S. Two 3D porous lanthanide-fumarate-oxalate frameworks exhibiting framework dynamics and luminescent change upon reversible de- and rehydration. Inorg Chem, 2007, 46: 1337–1342

    CAS  Google Scholar 

  114. Khatua S, Goswami S, Biswas S, et al. Stable multiresponsive luminescent MOF for colorimetric detection of small molecules in selective and reversible manner. Chem Mater, 2015, 27: 5349–5360

    CAS  Google Scholar 

  115. Wu S, Min H, Shi W, et al. Multicenter metal-organic framework-based ratiometric fluorescent sensors. Adv Mater, 2019, 341: 1805871

    Google Scholar 

  116. Lin RB, Li F, Liu SY, et al. A noble-metal-free porous coordination framework with exceptional sensing efficiency for oxygen. Angew Chem Int Ed, 2013, 52: 13429–13433

    CAS  Google Scholar 

  117. Dou Z, Yu J, Cui Y, et al. Luminescent metal-organic framework films as highly sensitive and fast-response oxygen sensors. J Am Chem Soc, 2014, 136: 5527–5530

    CAS  Google Scholar 

  118. Desai AV, Samanta P, Manna B, et al. Aqueous phase nitric oxide detection by an amine-decorated metal-organic framework. Chem Commun, 2015, 51: 6111–6114

    CAS  Google Scholar 

  119. Zhang X, Hu Q, Xia T, et al. Turn-on and ratiometric luminescent sensing of hydrogen sulfide based on metal-organic frameworks. ACS Appl Mater Interfaces, 2016, 8: 32259–32265

    CAS  Google Scholar 

  120. Zhang X, Zhang Q, Yue D, et al. Flexible metal-organic framework-based mixed-matrix membranes: A new platform for H2S sensors. Small, 2018, 14: 1801563

    Google Scholar 

  121. Chernikova V, Yassine O, Shekhah O, et al. Highly sensitive and selective SO2 MOF sensor: the integration of MFM-300 MOF as a sensitive layer on a capacitive interdigitated electrode. J Mater Chem A, 2018, 6: 5550–5554

    CAS  Google Scholar 

  122. Zhang Q, Wang CF, Lv YK. Luminescent switch sensors for the detection of biomolecules based on metal-organic frameworks. Analyst, 2018, 143: 4221–4229

    CAS  Google Scholar 

  123. Hu Z, Lustig WP, Zhang J, et al. Effective detection of mycotoxins by a highly luminescent metal-organic framework. J Am Chem Soc, 2015, 137: 16209–16215

    CAS  Google Scholar 

  124. Tian D, Liu XJ, Feng R, et al. Microporous luminescent metal-organic framework for a sensitive and selective fluorescence sensing of toxic mycotoxin in moldy sugarcane. ACS Appl Mater Interfaces, 2018, 10: 5618–5625

    CAS  Google Scholar 

  125. Zhang HT, Zhang JW, Huang G, et al. An amine-functionalized metal-organic framework as a sensing platform for DNA detection. Chem Commun, 2014, 50: 12069–12072

    CAS  Google Scholar 

  126. Ling P, Lei J, Zhang L, et al. Porphyrin-encapsulated metal-organic frameworks as mimetic catalysts for electrochemical DNA sensing via allosteric switch of hairpin DNA. Anal Chem, 2015, 87: 3957–3963

    CAS  Google Scholar 

  127. Fang JM, Leng F, Zhao XJ, et al. Metal-organic framework MIL-101 as a low background signal platform for label-free DNA detection. Analyst, 2014, 139: 801–806

    CAS  Google Scholar 

  128. Weng H, Yan B. A sliver ion fabricated lanthanide complex as a luminescent sensor for aspartic acid. Sensor Actuat B-Chem, 2017, 253: 1006–1011

    CAS  Google Scholar 

  129. Zhao Y, Wan MY, Bai JP, et al. pH-Modulated luminescence switching in a Eu-MOF: rapid detection of acidic amino acids. J Mater Chem A, 2019, 7: 11127–11133

    CAS  Google Scholar 

  130. Gao Y, Yu G, Liu K, et al. Luminescent mixed-crystal Ln-MOF thin film for the recognition and detection of pharmaceuticals. Sensor Actuat B-Chem, 2018, 257: 931–935

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (21531005, 21421001, 21905142, and 91856124), and the Programme of Introducing Talents of Discipline to Universities (B18030).

Author information

Authors and Affiliations

Authors

Contributions

He J prepared the manuscript under the guidance of Li N, Bu XH. Yin J searched the references. Xu J, Li N, and Bu XH revised the manuscript. All authors contributed to the general discussion and revision of the manuscript.

Corresponding authors

Correspondence to Na Li  (李娜) or Xian-He Bu  (卜显和).

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Jie He received his BSc degree in chemistry in 2015 from Hexi University and MSc degree at Hubei University in 2018. Now, he is pursuing his PhD degree at the School of Materials Science and Engineering, Nankai University under the supervision of Prof. Xian-He Bu. His research interests focus on the controlled synthesis of MOFs and their applications in luminescent sensing and catalysis.

Na Li obtained her PhD degree in inorganic chemistry in 2018 from Nankai University under the supervision of Prof. Xian-He Bu. Then, she joined Prof. Bu’s group as a postdoctoral research associate at Nankai University. Her recent research focuses on the design, controlled synthesis, and applications of new porous materials.

Xian-He Bu received his BSc and PhD degrees from Nankai University in 1986 and 1992 under the supervision of Prof. Yun-Ti Chen. He was promoted to a full professor in 1995. He was a visiting professor at Tokyo University (1999), Kyoto University (2002), IMS (1998), CUHK (2002) and HKUST (2004). In 2002, he won the support of the National Outstanding Youth Foundation; in 2004, he was selected as Cheung Kong Scholar Professor by the Ministry of Education. He is now the dean of School of Materials Science and Engineering of Nankai University. His research focuses on functional coordination chemistry, MOFs, crystal engineering, molecular magnetism, etc.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, J., Xu, J., Yin, J. et al. Recent advances in luminescent metal-organic frameworks for chemical sensors. Sci. China Mater. 62, 1655–1678 (2019). https://doi.org/10.1007/s40843-019-1169-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-019-1169-9

Keywords

Navigation