Skip to main content
Log in

Exponential Attractors for the Sup-Cubic Wave Equation with Nonlocal Damping

  • Published:
Bulletin of the Malaysian Mathematical Sciences Society Aims and scope Submit manuscript

Abstract

We study the long-time dynamics of a wave equation with nonlocal weak damping, nonlocal weak anti-damping and sup-cubic nonlinearity. Based on the Strichartz estimates in a bounded domain, we obtain the global well-posedness of the Shatah–Struwe solutions. To overcome the difficulties brought by the nonlinear weak damping term, we present a new-type Gronwall’s lemma to obtain the dissipative for the Shatah–Struwe solutions semigroup of this equation. Finally, we establish the existence of a time-dependent exponential attractor with the help of a more general criteria constructed by the quasi-stable technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of Data and Materials

No data were used to support this study.

References

  1. Ball, J.M.: Global attractors for damped semilinear wave equations. Discr. Cont. Dyn. Syst. 10, 31–52 (2004)

    Article  MathSciNet  Google Scholar 

  2. Blair, M.D., Smith, H.F., Sogge, C.D.: Strichartz estimates for the wave equation on manifolds with boundary. Ann. Inst. H. Poincaré Anal. Non Linaire 26(5), 1817–1829 (2009)

    Article  MathSciNet  Google Scholar 

  3. Brezis, H.: Analyse Fonctionnelle. Théorie et Applications. Masson, Paris (1983)

    Google Scholar 

  4. Burq, N., Lebeau, G., Planchon, F.: Global existence for energy critical waves in 3-D domains. J. AMS 21(3), 831–845 (2008)

    MathSciNet  Google Scholar 

  5. Burq, N., Lebeau, G., Planchon, F.: Global existence for energy critical waves in 3-D domains: Neumann boundary conditions. Am. J. Math. 131(6), 1715–1742 (2009)

    Article  MathSciNet  Google Scholar 

  6. Carvalho, A.N., Sonner, S.: Pullback exponential attractors for evolution processes in Banach spaces: theoretical results. Commun. Pure. Appl. Anal. 12, 3047–3071 (2013)

    Article  MathSciNet  Google Scholar 

  7. Carvalho, A.N., Sonner, S.: Pullback exponential attractors for evolution processes in Banach spaces: properties and applications. Commun. Pure. Appl. Anal. 13, 1114–1165 (2014)

    MathSciNet  Google Scholar 

  8. Cavalcanti, M.M., Cavalcanti, V.N.D., Ma, T.F.: Exponential decay of the viscoelastic Euler–Bernoulli equation with a nonlocal dissipation in general domains. Differ. Int. Equ. 17(5–6), 495–510 (2004)

    MathSciNet  Google Scholar 

  9. Chang, Q.Q., Li, D.D., Sun, C.Y., Zelik, S.: Deterministic and random attractors for a wave equations with sign changing damping. (Russian) Izv. Ross. Akad. Nauk Ser. Mat. 87, 161-210 (2023); translation in Izv. Math. 87, 154-199 (2023)

  10. Cavalcanti, M.M., Cavalcanti, V.N.D., Silva, M.A.J., Webler, C.M.: Exponential stability for the wave equation with degenerate nonlocal weak damping. Israel J. Math. 219(1), 189–213 (2017)

    Article  MathSciNet  Google Scholar 

  11. Chepyzhov, V.V., Vishik, M.I.: Attractors for Equations of Mathematical Physics, Amer. Math. Soc. Colloq. Publ., vol. 49, Amer. Math. Soc., Providence, RI (2002)

  12. Chueshov, I.: Global attractors for a class of Kirchhoff wave models with a structural nonlinear damping. J. Abstr. Differ. Equ. Appl. 1, 86–106 (2010)

    MathSciNet  Google Scholar 

  13. Chueshov, I.: Long-time dynamics of Kirchhoff wave models with strong nonlinear damping. J. Differ. Equ. 252, 1229–1262 (2012)

    Article  MathSciNet  Google Scholar 

  14. Chueshov, I.: Dynamics of Quasi-Stable Dissipative Systems. Springer, New York (2015)

    Book  Google Scholar 

  15. Chueshov, I., Lasiecka, I.: Attractors for second-order evolution equations with nonlinear damping. J. Dynam. Differ. Equ. 16, 469–512 (2004)

    Article  MathSciNet  Google Scholar 

  16. Chueshov, I., Lasiecka, I.: Long-time Behavior of Second Order Evolution Equations with Nonlinear Damping, Mem. Amer. Math. Soc., vol. 195, book 912, Providence (2008)

  17. Feireisl, E.: Global attractors for damped wave equations with supercritical exponent. J. Differ. Equ. 116, 431–447 (1995)

    Article  MathSciNet  Google Scholar 

  18. Kalantarov, V., Savostianov, A., Zelik, S.: Attractors for damped quintic wave equations in bounded domains. Ann. Henri Poincaré 17, 2555–2584 (2016)

    Article  MathSciNet  Google Scholar 

  19. Kapitanski, L.: Minimal compact global attractor for a damped semilinear wave equation. Comm. Partial Differ. Equ. 20, 1303–1323 (1995)

    Article  MathSciNet  Google Scholar 

  20. Lange, H., Perla Menzala, G.: Rates of decay of a nonlocal beam equation. Differ. Int. Equ. 10(6), 1075–1092 (1997)

    MathSciNet  Google Scholar 

  21. Lions, J.L.: Quelques Méthodes de Résolution des Problémes aux Limites Non linéaires. Dunod, Paris (1969)

    Google Scholar 

  22. Majda, A.: Introduction to PDEs and Waves for the Atmosphere and Oceans, AMS, Providence, RI (2003)

  23. Mei, X.Y., Sun, C.Y.: Uniform attractors for a weakly damped wave equation with sup-cubic nonlinearity. Appl. Math. Lett. 95, 179–185 (2019)

    Article  MathSciNet  Google Scholar 

  24. Mei, X.Y., Savostianov, A., Sun, C.Y., Zelik, S.: Infinite energy solutions for weakly damped quintic wave equations in \(\mathbb{R} ^{3}\). Trans. Amer. Math. Soc. 374(5), 3093–3129 (2021)

    Article  MathSciNet  Google Scholar 

  25. Pata, V., Zelik, S.: Smooth attractors for strongly damped wave equations. Nonlinearity 19, 1495–1506 (2006)

    Article  MathSciNet  Google Scholar 

  26. Pražák, D.: On finite fractal dimension of the global attractor for the wave equation with nonlinear damping. J. Dyn. Differ. Equ. 14, 764–776 (2002)

    Article  MathSciNet  Google Scholar 

  27. Pucci, P., Saldi, S.: Asymptotic stability for nonlinear damped Kirchhoff systems involving the fractional p-Laplacian operator. J. Differ. Equ. 263(5), 2375–2418 (2017)

    Article  MathSciNet  Google Scholar 

  28. Robinson, J.C.: Infinite-Dimensional Dyanamical Systems. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  29. Savostianov, A.: Strichartz estimates and smooth attractors for a sub-quintic wave equation with fractional damping in bounded domains. Adv. Differ. Equ. 20, 495–530 (2015)

    MathSciNet  Google Scholar 

  30. Savostianov, A.: Strichartz Estimates and Smooth Attractors of Dissipative Hyperbolic Equations, (Doctoral dissertation), University of Surrey (2015)

  31. Silva, M.A.J., Narciso, V.: Long-time dynamics for a class of extensible beams with nonlocal nonlinear damping. Evol. Equ. Control Theory 6, 437–470 (2017)

    Article  MathSciNet  Google Scholar 

  32. Simon, J.: Compact sets in the space \(L^{p}(0, T; B)\). Ann. Mat. Pura Appl. 146, 65–96 (1987)

    Article  MathSciNet  Google Scholar 

  33. Sogge, C.: Lectures on Non-linear Wave Equations, 2nd edn. International Press, Boston (2008)

    Google Scholar 

  34. Strichartz, R.: Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations. Duke Math. J. 44, 705–714 (1977)

    Article  MathSciNet  Google Scholar 

  35. Sun, C.Y., Cao, D.M., Duan, J.Q.: Non-autonomous dynamics of wave equations with nonlinear damping and critical nonlinearity. Nonlinearity 19, 2645–2665 (2006)

    Article  MathSciNet  Google Scholar 

  36. Sun, C.Y., Cao, D.M., Duan, J.Q.: Uniform attractors for non-autonomous wave equations with nonlinear damping. SIAM J. Appl. Dynam. Syst. 6, 293–318 (2007)

    Article  Google Scholar 

  37. Sun, C.Y., Yang, M.H., Zhong, C.K.: Global attractors for the wave equation with nonlinear damping. J. Differ. Equ. 227, 427–443 (2006)

    Article  MathSciNet  Google Scholar 

  38. Yang, Z.J., Li, Y.N.: Criteria on the existence and stability of pullback exponential attractors and their application to non-autonomous Kirchhoff wave models. Discr. Cont. Dyn. Syst. 38, 2629–2653 (2018)

    Article  MathSciNet  Google Scholar 

  39. Zelik, S.V.: Asymptotic regularity of solutions of a nonautonomous damped wave equation with a critical growth exponent. Comm. Pure Appl. Anal. 3, 921–934 (2004)

    Article  MathSciNet  Google Scholar 

  40. Zhao, C.Y., Zhao, C.X., Zhong, C.K.: Asymptotic behavior of the wave equation with nonlocal weak damping and anti-damping. J. Math. Anal. Appl. 490 124186–124202 (2020)

  41. Zhao, C.Y., Zhong, C.K., Yan, S.L.: The global attractor for a class of extensible beams with nonlocal weak damping. Discr. Cont. Dyn. Syst. B 25, 935–955 (2020)

    MathSciNet  Google Scholar 

  42. Zheng, S.M.: Nonlinear Evolution Equations, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 133. CRC Press, USA (2004)

    Google Scholar 

  43. Zhou, F., Li, H.F.: Dynamics of the non-autonomous wave equations with nonlocal weak damping and critical nonlinearity. J. Dyn. Differ. Equ. (Under review)

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No.11601522, No. 12201421) and the Shandong Provincial Natural Science Foundation (Grant Nos. ZR2021MA025,ZR2021MA028).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, F.Z.; writing-original draft preparation, F.Z.; writing-review and editing, F.Z., Z.S., K.Z. and X.M.; supervision, F.Z.; project administration, F.Z.

Corresponding author

Correspondence to Feng Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no Conflict of interest.

Ethical Approval

All authors read and approved the final version of the manuscript

Additional information

Communicated by Rosihan M. Ali.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Proof of Lemma 2.5

Suppose \(\tau<s<t<T\), let \(\theta _{m}\) be a piecewise continuous linear function and satisfying

$$\begin{aligned} \theta _{m}(r)= {\left\{ \begin{array}{ll} 1,\quad r\in (s+\frac{2}{m},t-\frac{2}{m});\\ 0,\quad r\in [t-\frac{1}{m},T]\text { or }r\in [\tau ,s+\frac{1}{m}]. \end{array}\right. } \end{aligned}$$

Let \(\rho _{n}\in \mathscr {D}(\mathbb {R})\) be a regularizing sequence of even functions,

$$\begin{aligned} \rho _{n}(r)=\rho _{n}(-r),\quad \int \limits _{-\infty }^{+\infty }\rho _{n}(r)dr=1,\quad \text {Supp}\rho _{n}\subset \left[ -\frac{1}{n},\frac{1}{n}\right] . \end{aligned}$$

Let

$$\begin{aligned} v=\left( (\theta _{m}u^{\prime })*\rho _{n}*\rho _{n}\right) \theta _{m}. \end{aligned}$$

Obviously, we have

$$\begin{aligned} v=\left( (\theta _{m}u)^{\prime }*\rho _{n}*\rho _{n}\right) \theta _{m} -\left( (\theta _{m}^{\prime }u)*\rho _{n}*\rho _{n}\right) \theta _{m}. \end{aligned}$$

Taking the \(L^{2}\)-inner product between (2.7)\(^{1}\) and v, we have

$$\begin{aligned} P_{n,m}+Q_{n,m}=\int \limits _{\tau }^{T}\left\langle f,v\right\rangle dr, \end{aligned}$$
(5.1)

where

$$\begin{aligned} P_{n,m}&=\int \limits _{\tau }^{T}\theta _{m}\left\langle u^{\prime \prime },(\theta _{m}u^{\prime })*\rho _{n}*\rho _{n}\right\rangle dr,\\ Q_{n,m}&=\int \limits _{\tau }^{T}\theta _{m}\left\langle \nabla u,\nabla (\theta _{m}u^{\prime })\right\rangle *\rho _{n}*\rho _{n})dr. \end{aligned}$$

Firstly, we have

$$\begin{aligned} P_{n,m}&=\int \limits _{\tau }^{T}\left\langle (\theta _{m}u^{\prime })^{\prime }*\rho _{n},(\theta _{m}u^{\prime })*\rho _{n}\right\rangle dr-\int \limits _{\tau }^{T}\left\langle (\theta _{m}^{\prime }u^{\prime })*\rho _{n},(\theta _{m}u^{\prime })*\rho _{n}\right\rangle dr \nonumber \\&=-\int \limits _{\tau }^{T}\left\langle (\theta _{m}^{\prime }u^{\prime })*\rho _{n},(\theta _{m}u^{\prime })*\rho _{n}\right\rangle dr \nonumber \\&\rightarrow - \int \limits _{\tau }^{T}\theta _{m}\theta _{m}^{\prime }\Vert u^{\prime }(r)\Vert ^{2}dr, \quad \text {as }n\rightarrow \infty . \end{aligned}$$
(5.2)

Secondly, we can get that

$$\begin{aligned} Q_{n,m}&=\int \limits _{\tau }^{T}\left\langle \left\langle (\theta _{m}u)*\rho _{n},(\theta _{m}u)^{\prime }*\rho _{n}\right\rangle \right\rangle dr-\int \limits _{\tau }^{T}\left\langle \left\langle (\theta _{m}u)*\rho _{n},\theta _{m}^{\prime }u*\rho _{n}\right\rangle \right\rangle dr\nonumber \\&=-\int \limits _{\tau }^{T} \left\langle \left\langle (\theta _{m}u)*\rho _{n},(\theta _{m}^{\prime }u)*\rho _{n}\right\rangle \right\rangle dr\nonumber \\&\rightarrow -\int \limits _{\tau }^{T}\theta _{m}\theta _{m}^{\prime }\Vert \nabla u(r)\Vert ^{2}dr\quad \text {as }n\rightarrow \infty , \end{aligned}$$
(5.3)

here \(\left\langle \left\langle \cdot ,\cdot \right\rangle \right\rangle \) stands for the \(\mathcal {H}^{1}\)-inner product. Combining now (5.1)-(5.3) and letting \(m\rightarrow \infty \), we find

$$\begin{aligned} -\int \limits _{\tau }^{T}\theta _{m}\theta _{m}^{\prime }\Vert u^{\prime }(r)\Vert ^{2}dr- \int \limits _{\tau }^{T}\theta _{m}\theta _{m}^{\prime }\Vert \nabla u(r)\Vert ^{2}dr= \int \limits _{\tau }^{T}\left\langle f,\theta _{m}^{2}u^{\prime }(r)\right\rangle dr. \end{aligned}$$
(5.4)

On the other hand, if \(k\in L^{1}(\tau ,T)\), then Lebesgue dominated Theorem implies that

$$\begin{aligned} -\int \limits _{\tau }^{T}\theta _{m}\theta _{m}^{\prime }k(r)dr&=\,m\int \limits _{t-\frac{2}{m}}^{t-\frac{1}{m}}(-mr+mt-1)k(r)dr-m\int \limits _{s+\frac{1}{m}}^{s+\frac{2}{m}}(mr-ms-1)k(r)dr \nonumber \\&\rightarrow \frac{1}{2}k(t)-\frac{1}{2}k(s)\quad \text {as }m\rightarrow \infty . \end{aligned}$$
(5.5)

Letting \(m\rightarrow \infty \) in (5.4) and applying (5.5), we deduce

$$\begin{aligned} \frac{1}{2}\Vert \xi _{u}(t)\Vert _{\mathscr {E}}^{2}= \frac{1}{2}\Vert \xi _{u}(s)\Vert _{\mathscr {E}}^{2}+\int \limits _{s}^{t}\left\langle f,\partial _{t}u\right\rangle dr\quad \text {for a.e. }s,t\in [\tau ,T]. \end{aligned}$$
(5.6)

Recalling \((u,\partial _{t}u)\in L^{\infty }(\tau ,T;\mathscr {E})\) and satisfying (2.7), we discover

$$\begin{aligned} {\left\{ \begin{array}{ll} u(s)\rightharpoonup z_{1}\quad \text {weakly in }\mathcal {H},\\ \partial _{t}u(s)\rightharpoonup z_{2}\quad \text {weakly in }\mathcal {H}^{0}, \end{array}\right. } \text {as }s\rightarrow \tau . \end{aligned}$$

Since \((u(s),\partial _{t}u(s))\) is continuous in \(\mathcal {H}^{0}\times \mathcal {H}^{-1}\), then we can get \(z_{1}=u_{\tau }^{0}\), \(z_{2}=u_{\tau }^{1}\). Then we can get (2.8) by letting \(s\rightarrow \tau \) in (5.6) and applying \(\Vert \cdot \Vert _{\mathscr {E}}\) is weak lower semi-continuous.

1.2 Proof of New-Type Gronwall’s Inequality

Proof

Using condition (3.4), we can choose \(\varepsilon \) so small such that

$$\begin{aligned} \Psi (u(\tau ))<\left[ \frac{\kappa }{\beta (\varepsilon )}\right] ^{\frac{1}{\gamma }} -\frac{3Q}{e^{\alpha (\varepsilon )}-1}. \end{aligned}$$
(5.7)

We assert now that (5.7) implies

$$\begin{aligned} \Psi (u(t))<\left[ \frac{\kappa }{\beta (\varepsilon )}\right] ^{\frac{1}{\gamma }},\quad \forall t\ge \tau . \end{aligned}$$
(5.8)

If (5.8) is not true, let \(t^{*}=\inf \{t\ge \tau ,\Psi (u(t)) \ge \left[ \frac{\kappa }{\beta (\varepsilon )}\right] ^{\frac{1}{\gamma }}\}\), obviously we have \(\Psi (u(t^{*}))=[\frac{\kappa }{\beta (\varepsilon )}]^{\frac{1}{\gamma }}\) and

$$\begin{aligned} \Psi (u(t))\le \left[ \frac{\kappa }{\beta (\varepsilon )}\right] ^{\frac{1}{\gamma }}. \end{aligned}$$
(5.9)

Combining (3.3) and (5.9), we have

$$\begin{aligned} \Psi (u(t^{*}))&\le e^{-\alpha (\varepsilon )(t^{*}-\tau )}\Psi (u(\tau )) +\int \limits _{\tau }^{t^{*}}e^{-\alpha (\varepsilon )(t^{*}-r)}|q(r)|dr \\&\le e^{-\alpha (\varepsilon )(t^{*}-\tau )}\Psi (u(\tau )) +\frac{3Q}{e^{\alpha (\varepsilon )}-1} \\&<\left[ \frac{\kappa }{\beta (\varepsilon )}\right] ^{\frac{1}{\gamma }}. \end{aligned}$$

So we have a contradiction and thereby (5.8) can exist.

Now applying (3.3) and (5.8), we can obtain

$$\begin{aligned} \Psi (u(t)) \le e^{-\alpha (\varepsilon )(t-\tau )}\Psi (u(\tau )) +\frac{3Q}{e^{\alpha (\varepsilon )}-1}. \end{aligned}$$
(5.10)

Using Taylor’s formula, we can easily find

$$\begin{aligned} \left[ \frac{\kappa }{\beta (\varepsilon )}\right] ^{\frac{1}{\gamma }} -\frac{3Q}{e^{\alpha (\varepsilon )}-1} \ge \left[ \frac{\kappa }{\beta (\varepsilon )}\right] ^{\frac{1}{\gamma }} -\frac{3Q}{\alpha (\varepsilon )}. \end{aligned}$$
(5.11)

Choosing \(\frac{1}{\alpha (\varepsilon )}=\frac{2(\lambda +1)}{\kappa }R^{\gamma }\) and applying (3.4) we can get

$$\begin{aligned} \left[ \frac{\kappa }{\beta (\varepsilon )}\right] ^{\frac{1}{\gamma }} -\frac{3Q}{\alpha (\varepsilon )}\ge R \end{aligned}$$

for any R large enough. Then applying (5.10), we observe

$$\begin{aligned} \Psi (u(t)) \le N(1+R^{\gamma }),\quad \forall t-\tau \ge T'(R), \end{aligned}$$
(5.12)

where \(N:=N_{Q,\lambda ,\kappa }\) may depend on Q, \(\lambda \) and \(\kappa \). We can assume without loss of generality that \(N>1\) and \(R>1\). It follows from (5.12) and \(0<\gamma <1\) that there exists \(T=T(R)\) such that

$$\begin{aligned} \Psi (u(t)) \le (2N)^{\frac{1}{1-\gamma }}+1,\quad \forall t-\tau \ge T\text { and }\Psi (u(\tau ))\le R. \end{aligned}$$
(5.13)

Let \(R_{0}=(2N)^{\frac{1}{1-\gamma }}+1\) and thus the lemma is proved. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, F., Sun, Z., Zhu, K. et al. Exponential Attractors for the Sup-Cubic Wave Equation with Nonlocal Damping. Bull. Malays. Math. Sci. Soc. 47, 104 (2024). https://doi.org/10.1007/s40840-024-01703-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40840-024-01703-6

Keywords

Mathematics Subject Classification

Navigation