Skip to main content
Log in

Blow-up Analysis to a Quasilinear Chemotaxis System with Nonlocal Logistic Effect

  • Published:
Bulletin of the Malaysian Mathematical Sciences Society Aims and scope Submit manuscript

Abstract

In this paper, we consider the following quasilinear chemotaxis system involving nonlocal effect

$$\begin{aligned} \left\{ \begin{array}{ll} u_{t}=\nabla \cdot (\varphi (u)\nabla u)-\nabla \cdot (u\nabla v)+\mu u \left( 1-\int _{\Omega }u^{\alpha }\text {d}x\right) ,\ {} &{}\ \ x\in \Omega , \ t>0,\\[2.5mm] 0=\Delta v-m(t)+u,\ m(t)=\frac{1}{|\Omega |}\int _{\Omega } u(x,t)\text {d}x,\ {} &{}\ \ x\in \Omega , \ t>0,\\[2.5mm] u(x,0)=u_{0}(x), \ {} &{}\ \ x\in \Omega , \end{array} \right. \end{aligned}$$

where \(\Omega =B_{R}(0)\subset {\mathbb {R}}^n (n\ge 3)\) with \(R>0,\) the parameters \(\mu , \alpha \) are positive constants and diffusion function \( \varphi (u)\le C_{0}(1+u)^{-m}\) for all \(u\ge 0\) with \(C_{0}>0\) and \(m> -1.\) It has been shown that if

$$\begin{aligned} 0<\alpha <\min \left\{ 2,\frac{n}{2},\frac{n(m+1)}{2}\right\} , \end{aligned}$$

then there exist suitable initial data \(u_{0}\) such that the corresponding radially symmetric solution blows up in finite time. In this work, we extend the blow-up result established by previous researchers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bian, S., Chen, L., Latos, E.A.: Nonlocal nonlinear reaction preventing blow-up in supercritical case of chemotaxis system. Nonlinear Anal. 176, 178–191 (2018)

    MathSciNet  Google Scholar 

  2. Cao, X., Zheng, S.: Boundedness of solutions to a quasilinear parabolic–elliptic Keller–Segel system with logistic source. Math. Methods Appl. Sci. 37, 2326–2330 (2014)

    ADS  MathSciNet  Google Scholar 

  3. Calvez, V., Carrillo, J.: Volume effects in the Keller–Segel model: energy estimates preventing blow-up. J. Math. Pures Appl. 86, 155–75 (2006)

    MathSciNet  Google Scholar 

  4. Cieślak, T., Laurencot, P.: Finite time blow-up for a one-dimensional quasilinear parabolic–parabolic chemotaxis system. Ann. Inst. H. Poincaré Anal. Non Linéaire 27, 437–446 (2010)

    ADS  MathSciNet  Google Scholar 

  5. Cieślak, T., Stinner, C.: Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller–Segel system in higher dimensions. J. Differ. Equ. 252, 5832–5851 (2012)

    ADS  MathSciNet  Google Scholar 

  6. Cieślak, T., Stinner, C.: Finite-time blowup in a supercritical quasilinear parabolic–parabolic Keller–Segel system in dimension 2. Acta Appl. Math. 129, 135–146 (2014)

    MathSciNet  Google Scholar 

  7. Cieślak, T., Stinner, C.: New critical exponents in a fully parabolic quasilinear Keller–Segel system and applications to volume filling models. J. Differ. Equ. 258, 2080–2113 (2015)

    ADS  MathSciNet  Google Scholar 

  8. Cieślak, T., Winkler, M.: Finite-time blow-up in a quasilinear system of chemotaxis. Nonlinearity 21, 1057–1076 (2008)

    ADS  MathSciNet  Google Scholar 

  9. Du, W., Liu, S.: Blow-up solutions of a chemotaxis model with nonlocal effects. Nonlinear Anal. Real World Appl. 73, Paper No. 103890 (2023)

  10. Fuest, M.: Approaching optimality in blow-up results for Keller–Segel systems with logistic-type dampening. NoDEA Nonlinear Differ. Equ. Appl. 28, Paper No. 16 (2021)

  11. Galakhov, E., Salieva, O., Tello, J.I.: On a parabolic–elliptic system with chemotaxis and logistic type growth. J. Differ. Equ. 261, 4631–4647 (2016)

    ADS  MathSciNet  Google Scholar 

  12. Horstmann, D., Wang, G.: Blow-up in a chemotaxis model without symmetry assumptions. Eur. J. Appl. Math. 12, 159–177 (2001)

    MathSciNet  CAS  Google Scholar 

  13. Hillen, T., Painter, K.: Global existence for a parabolic chemotaxis model with prevention of overcrowding. Adv. Appl. Math. 26, 280–301 (2001)

    MathSciNet  Google Scholar 

  14. Keller, E., Segel, L.: Initiation of slime mold aggregation viewed as an instability. J. Theoret. Biol. 26, 399–415 (1970)

    ADS  MathSciNet  CAS  Google Scholar 

  15. Ladyzenskaja, O.A., Solonnikov, V.A., Uralceva, N.N.: Linear and Quasi-Linear Equations of Parabolic Type, Translations of Mathematical Monographs, vol. 23. American Mathematical Society, Providence, RI (1968)

    Google Scholar 

  16. Li, X., Xiang, Z.: Boundedness in quasilinear Keller–Segel equations with nonlinear sensitivity and logistic source. Discrete Contin. Dyn. Syst. 35, 3503–3531 (2015)

    MathSciNet  Google Scholar 

  17. Li, Y.: Finite-time blow-up in quasilinear parabolic–elliptic chemotaxis system with nonlinear signal production. J. Math. Anal. Appl. 480, 123376 (2019)

    MathSciNet  Google Scholar 

  18. Liu, M., Li, Y.: Finite-time blowup in attraction–repulsion systems with nonlinear signal production. Nonlinear Anal. RWA 61, 103305 (2021)

    MathSciNet  Google Scholar 

  19. Nagai, T.: Blow-up of radially symmetric solutions to a chemotaxis system. Adv. Math. Sci. Appl. 5, 581–601 (1995)

    MathSciNet  Google Scholar 

  20. Nagai, T., Senba, T., Yoshida, K.: Application of the Trudinger–Moser inequality to a parabolic system of chemotaxis. Funkcial. Ekvac. 40, 411–433 (1997)

    MathSciNet  Google Scholar 

  21. Negreanu, M., Tello, J.I.: On a competitive system under chemotactic effects with non-local terms. Nonlinearity 26, 1083–1103 (2013)

    ADS  MathSciNet  Google Scholar 

  22. Osaki, K., Yagi, A.: Finite dimensional attractor for one-dimensional Keller–Segel equations. Funkcial. Ekvac. 44, 441–469 (2001)

    MathSciNet  Google Scholar 

  23. Painter, K., Hillen, T.: Volume-filling and quorum-sensing in models for chemosensitive movement. Can. Appl. Math. Q. 10, 501–543 (2002)

    MathSciNet  Google Scholar 

  24. Senba, T., Suzuki, T.: Chemotactic collapse in a parabolic–elliptic system of mathematical biology. Adv. Differ. Equ. 6, 21–50 (2001)

    MathSciNet  Google Scholar 

  25. Senba, T., Suzuki, T.: Parabolic system of chemotaxis: blowup in a finite and the infinite time. Methods Appl. Anal. 8, 349–367 (2001)

    MathSciNet  Google Scholar 

  26. Senba, T., Suzuki, T.: Weak solutions to a parabolic–elliptic system of chemotaxis. J. Funct. Anal. 191, 17–51 (2002)

    MathSciNet  Google Scholar 

  27. Senba, T., Suzuki, T.: A quasi-linear system of chemotaxis. Abstr. Appl. Anal. 2006, 1–21 (2006)

    MathSciNet  Google Scholar 

  28. Szymańska, Z., Rodrigo, C., Cristian, M., Lachowicz, M., Chaplain, M.A.J.: Mathematical modelling of cancer invasion of tissue: the role and effect of nonlocal interactions. Math. Models Methods Appl. Sci. 19, 257–281 (2009)

    MathSciNet  Google Scholar 

  29. Tao, X., Fang, Z.: Global boundedness of solutions to a quasilinear chemotaxis system with nonlocal nonlinear reaction. Appl. Math. Optim. 87, Paper No. 20 (2023)

  30. Tao, Y., Winkler, M.: Boundedness in a quasilinear parabolic–parabolic Keller–Segel system with subcritical sensitivity. J. Differ. Equ. 252, 692–715 (2012)

    ADS  MathSciNet  Google Scholar 

  31. Tello, J.I., Winkler, M.: A chemotaxis system with logistic source. Commun. Partial Differ. Equ. 32, 849–877 (2007)

    MathSciNet  Google Scholar 

  32. Wang, C., Zhao, L., Zhu, X.: A blow-up result for attraction–repulsion system with nonlinear signal production and generalized logistic source. J. Math. Anal. Appl. 518, 126679 (2023)

    MathSciNet  Google Scholar 

  33. Wang, C., Wang, P., Zhu, X.: Global dynamics in a chemotaxis system involving nonlinear indirect signal secretion and logistic source. Z. Angew. Math. Phys. 74, Paper No. 237 (2023)

  34. Wang, L., Li, Y., Mu, C.: Boundedness in a parabolic–parabolic quasilinear chemotaxis system with logistic source. Discrete Contin. Dyn. Syst. 34, 789–802 (2014)

    MathSciNet  CAS  Google Scholar 

  35. Wang, L., Mu, C., Zheng, P.: On a quasilinear parabolic–elliptic chemotaxis system with logistic source. J. Differ. Equ. 256, 1847–1872 (2014)

    MathSciNet  Google Scholar 

  36. Wang, W., Ding, M., Li, Y.: Global boundedness in a quasilinear chemotaxis system with general density-signal governed sensitivity. J. Differ. Equ. 263, 2851–2873 (2017)

    ADS  MathSciNet  Google Scholar 

  37. Winkler, M.: Chemotaxis with logistic source: very weak global solutions and their boundedness properties. J. Math. Anal. Appl. 348, 708–729 (2008)

    MathSciNet  Google Scholar 

  38. Winkler, M.: Does a ‘volume-filling effect’ always prevent chemotactic collapse? Math. Models Methods Appl. Sci. 33, 12–24 (2010)

    ADS  MathSciNet  Google Scholar 

  39. Winkler, M.: Blow-up in a higher-dimensional chemotaxis system despite logistic growth restriction. J. Math. Anal. Appl. 384, 261–272 (2011)

    MathSciNet  Google Scholar 

  40. Winkler, M.: Finite-time blow-up in the higher-dimensional parabolic–parabolic Keller–Segel system. J. Math. Pures Appl. 100, 748–767 (2013)

    MathSciNet  Google Scholar 

  41. Winkler, M.: Finite-time blow-up in low-dimensional Keller–Segel systems with logistic-type superlinear degradation. Z. Angew. Math. Phys. 69, 40 (2018)

    MathSciNet  Google Scholar 

  42. Winkler, M.: A critical blow-up exponent in a chemotaxis system with nonlinear signal production. Nonlinearity 31, 2031–2056 (2018)

    ADS  MathSciNet  Google Scholar 

  43. Winkler, M., Djie, K.C.: Boundedness and finite-time collapse in a chemotaxis system with volume-filling effect. Nonlinear Anal. 72, 1044–1064 (2010)

    MathSciNet  Google Scholar 

  44. Xiang, T.: Dynamics in a parabolic–elliptic chemotaxis system with growth source and nonlinear secretion. Commun. Pure Appl. Anal. 18, 255–284 (2019)

    MathSciNet  Google Scholar 

  45. Zhang, Q., Li, Y.: Boundedness in a quasilinear fully parabolic Keller–Segel system with logistic source. Z. Angew. Math. Phys. 66, 2473–2484 (2015)

    MathSciNet  Google Scholar 

  46. Zheng, J.: Boundedness of solutions to a quasilinear parabolic–elliptic Keller–Segel system with logistic source. J. Differ. Equ. 259, 120–140 (2015)

    ADS  MathSciNet  Google Scholar 

  47. Zheng, P.: On a generalized volume-filling chemotaxis system with nonlinear signal production. Monatsh. Math. 198, 211–231 (2022)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to deeply thank the editor and anonymous reviewers for their insightful and constructive comments. We also deeply thank Professor Li-Ming Cai for his support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Jian Wang.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Additional information

Communicated by Hongjun Gao.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was partially supported by the National Natural Science Foundation of China Nos. 11901500, 12271466, Scientific and Technological Key Projects of Henan Province No. 232102310227, No. 222102320425 and Nanhu Scholars Program for Young Scholars of XYNU No. 2020017.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, CJ., Zhu, JY. Blow-up Analysis to a Quasilinear Chemotaxis System with Nonlocal Logistic Effect. Bull. Malays. Math. Sci. Soc. 47, 60 (2024). https://doi.org/10.1007/s40840-024-01659-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40840-024-01659-7

Keywords

Mathematics Subject Classification

Navigation