Skip to main content
Log in

Finite-Time Blow-up in a Two-Species Chemotaxis-Competition Model with Degenerate Diffusion

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

This paper is concerned with the two-species chemotaxis-competition model with degenerate diffusion,

$$ \textstyle\begin{cases} u_{t} = \Delta u^{m_{1}} - \chi _{1} \nabla \cdot (u\nabla w) + \mu _{1} u (1-u-a_{1}v), &x\in \Omega ,\ t>0, \\ v_{t} = \Delta v^{m_{2}} - \chi _{2} \nabla \cdot (v\nabla w) + \mu _{2} v (1-a_{2}u-v), &x\in \Omega ,\ t>0, \\ 0 = \Delta w +u+v-\overline{M}(t), &x\in \Omega ,\ t>0, \end{cases} $$

with \(\int _{\Omega }w(x,t)\,dx=0\), \(t>0\), where \(\Omega := B_{R}(0) \subset \mathbb{R}^{n}\) \((n\ge 5)\) is a ball with some \(R>0\); \(m_{1},m_{2}>1\), \(\chi _{1},\chi _{2},\mu _{1},\mu _{2},a_{1},a_{2}>0\); \(\overline{M}(t)\) is the spatial average of \(u+v\). In this paper, we show that if

$$ m_{1}< 2-\frac{4}{n}, \quad \chi _{1}>\frac{n(2-m_{1})}{n(2-m_{1})-4} \cdot \max \{ 1,a_{1} \}\mu _{1} \quad \text{and} \quad \chi _{2}>\mu _{2}a_{2} $$

or

$$ m_{2}< 2-\frac{4}{n}, \quad \chi _{1}>\mu _{1}a_{1}\quad \text{and} \quad \chi _{2}>\frac{n(2-m_{2})}{n(2-m_{2})-4}\cdot \max \{ 1,a_{2} \}\mu _{2}, $$

then there exist radially symmetric initial data such that the weak solution blows up in finite time in the sense that there is \(\widetilde{T}_{\mathrm{max}}\in (0,\infty )\) such that

$$ \limsup _{t \nearrow \widetilde{T}_{\mathrm{max}}}\, (\|u(t)\|_{L^{\infty }( \Omega )} + \|v(t)\|_{L^{\infty }(\Omega )})=\infty . $$

To obtain this result, we apply the method in the previous paper (Discrete Contin. Dyn. Syst., Ser. B 28(1):262–286, 2023) to derive an integral inequality for a moment-type functional, which was introduced by Winkler (Z. Angew. Math. Phys. 69(2):69, 2018). Moreover, before proving blow-up of solutions in the above model, we give a result on finite-time blow-up under the same conditions for \(m_{1}\), \(m_{2}\), \(\chi _{1}\) and \(\chi _{2}\) in the model with the terms \(\Delta u^{m_{1}}\), \(\Delta v^{m_{2}}\) replaced with the nondegenerate diffusion terms \(\Delta (u+{\varepsilon })^{m_{1}}\), \(\Delta (v+{\varepsilon })^{m_{2}}\), where \({\varepsilon }\in (0,1]\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bai, X., Winkler, M.: Equilibration in a fully parabolic two-species chemotaxis system with competitive kinetics. Indiana Univ. Math. J. 65, 553–583 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Black, T., Lankeit, J., Mizukami, M.: On the weakly competitive case in a two-species chemotaxis model. IMA J. Appl. Math. 81, 860–876 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Black, T., Fuest, M., Lankeit, J.: Relaxed parameter conditions for chemotactic collapse in logistic-type parabolic–elliptic Keller–Segel systems. Z. Angew. Math. Phys. 72(9), 96 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  4. Black, T., Fuest, M., Lankeit, J., Mizukami, M.: Possible points of blow-up in chemotaxis systems with spatially heterogeneous logistic source (2022). ArXiv

  5. Brown, P.N.: Decay to uniform states in ecological interactions. SIAM J. Appl. Math. 38, 22–37 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cieślak, T., Winkler, M.: Finite-time blow-up in a quasilinear system of chemotaxis. Nonlinearity 21(5), 1057–1076 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Conway, E.D., Smoller, J.A.: A comparison technique for systems of reaction-diffusion equations. Commun. Partial Differ. Equ. 2, 679–697 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  8. de Mottoni, P., Rothe, F.: Convergence to homogeneous equilibrium state for generalized Volterra–Lotka systems with diffusion. SIAM J. Appl. Math. 37, 648–663 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fuest, M.: Finite-time blow-up in a two-dimensional Keller–Segel system with an environmental dependent logistic source. Nonlinear Anal., Real World Appl. 52, 103022 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fuest, M.: Approaching optimality in blow-up results for Keller–Segel systems with logistic-type dampening. Nonlinear Differ. Equ. Appl. 28(2), 16 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  11. Huang, H., Huang, R., Wang, L., Yin, J.: Periodic solutions for the degenerate Lotka–Volterra competition system. Qual. Theory Dyn. Syst. 19(2), 73 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ishida, S., Yokota, T.: Global existence of weak solutions to quasilinear degenerate Keller–Segel systems of parabolic–parabolic type. J. Differ. Equ. 252(2), 1421–1440 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ishida, S., Yokota, T.: Blow-up in finite or infinite time for quasilinear degenerate Keller–Segel systems of parabolic–parabolic type. Discrete Contin. Dyn. Syst., Ser. B 18(10), 2569–2596 (2013)

    MathSciNet  MATH  Google Scholar 

  14. Kan-on, Y., Yanagida, E.: Existence of non-constant stable equilibria in competition diffusion equations. Hiroshima Math. J. 23, 193–221 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kishimoto, K., Weinberger, H.F.: The spatial homogeneity of stable equilibria of some reaction-diffusion systems on convex domains. J. Differ. Equ. 58, 15–21 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lin, K., Mu, C., Wang, L.: Boundedness in a two-species chemotaxis system. Math. Methods Appl. Sci. 38, 5085–5096 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lou, Y., Ni, W.-M.: Diffusion, self-diffusion and cross-diffusion. J. Differ. Equ. 131, 79–131 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  18. Matano, H., Mimura, M.: Pattern formation in competition-diffusion systems in nonconvex domains. Publ. Res. Inst. Math. Sci. 19, 1049–1079 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mizukami, M.: Boundedness and asymptotic stability in a two-species chemotaxis-competition model with signal-dependent sensitivity. Discrete Contin. Dyn. Syst., Ser. B 22, 2301–2319 (2017)

    MathSciNet  MATH  Google Scholar 

  20. Mizukami, M.: Boundedness and stabilization in a two-species chemotaxis-competition system of parabolic–parabolic–elliptic type. Math. Methods Appl. Sci. 41, 234–249 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mizukami, M., Tanaka, Y.: Finite-time blow-up in a two-species chemotaxis-competition model with single production. In: Proceedings of Equadiff 15, vol. 59, pp. 215–222 (2023)

    Google Scholar 

  22. Mizukami, M., Tanaka, Y., Yokota, T.: Can chemotactic effects lead to blow-up or not in two-species chemotaxis-competition models? Z. Angew. Math. Phys. 73(6), 239 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  23. Murray, J.D.: Mathematical Biology. I. An Introduction, 3rd edn. Interdisciplinary Applied Mathematics, vol. 17. Springer, New York (2002)

    Book  MATH  Google Scholar 

  24. Murray, J.D.: Mathematical Biology. II. Spatial Models and Biomedical Applications, 3rd edn. Interdisciplinary Applied Mathematics, vol. 18. Springer, New York (2003)

    MATH  Google Scholar 

  25. Okubo, A., Levin, S.A.: Diffusion and Ecological Problems: Modern Perspectives, 2nd edn. Interdisciplinary Applied Mathematics, vol. 14. Springer, New York (2001)

    Book  MATH  Google Scholar 

  26. Pao, C.V.: Dynamics of Lotka–Volterra competition reaction–diffusion systems with degenerate diffusion. J. Math. Anal. Appl. 421(2), 1721–1742 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Stinner, C., Tello, J.I., Winkler, M.: Competitive exclusion in a two-species chemotaxis model. J. Math. Biol. 68, 1607–1626 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Tanaka, Y.: Boundedness and finite-time blow-up in a quasilinear parabolic–elliptic chemotaxis system with logistic source and nonlinear production. J. Math. Anal. Appl. 506, 125654 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  29. Tanaka, Y.: Existence of blow-up solutions for a degenerate parabolic–elliptic Keller–Segel system with logistic source. In: Proceedings of Equadiff 15, vol. 59, pp. 223–230 (2023)

    Google Scholar 

  30. Tanaka, Y., Yokota, T.: Finite-time blow-up in a quasilinear degenerate parabolic–elliptic chemotaxis system with logistic source and nonlinear production. Discrete Contin. Dyn. Syst., Ser. B 28(1), 262–286 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  31. Tao, Y., Winkler, M.: Boundedness in a quasilinear parabolic–parabolic Keller–Segel system with subcritical sensitivity. J. Differ. Equ. 252(1), 692–715 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Tello, J.I., Winkler, M.: Stabilization in a two-species chemotaxis system with a logistic source. Nonlinearity 25, 1413–1425 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  33. Winkler, M.: Blow-up in a higher-dimensional chemotaxis system despite logistic growth restriction. J. Math. Anal. Appl. 384(2), 261–272 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. Winkler, M.: A critical blow-up exponent in a chemotaxis system with nonlinear signal production. Nonlinearity 31(5), 2031–2056 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  35. Winkler, M.: Finite-time blow-up in low-dimensional Keller–Segel systems with logistic-type superlinear degradation. Z. Angew. Math. Phys. 69(2), 69 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

Partially supported by JSPS KAKENHI Grant Number JP22J11193.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuya Tanaka.

Ethics declarations

Competing Interests

The author declares no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanaka, Y. Finite-Time Blow-up in a Two-Species Chemotaxis-Competition Model with Degenerate Diffusion. Acta Appl Math 186, 13 (2023). https://doi.org/10.1007/s10440-023-00592-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10440-023-00592-4

Keywords

Mathematics Subject Classification

Navigation