Skip to main content

Advertisement

Log in

Spatio-Temporal Modelling of Dengue Fever Patterns in Peninsular Malaysia from 2015–2017

  • Published:
Bulletin of the Malaysian Mathematical Sciences Society Aims and scope Submit manuscript

Abstract

Spatio-temporal disease mapping models can be used to describe the geographical pattern of disease incidence across space and time. This paper discusses the development and application of spatio-temporal disease models based on generalized linear mixed models (GLMM) incorporating spatially correlated random effects, temporal effects and space–time interaction. Further, the models are fitted within a hierarchical Bayesian framework with Integrated Nested Laplace Approximation (INLA) methodology. The main objectives of this study are to choose the model that best represents the pattern of dengue incidence in Peninsular Malaysia from 2015 to 2017, to estimate the relative risk of disease based on the model selected and to visualize the risk spatial pattern and temporal trend. The models were applied to weekly dengue fever data at the district level in Peninsular Malaysia as reported to the Ministry of Health Malaysia from 2015 to 2017. In conclusion, it can be seen that there was a difference in dengue trend for every district for 2015–2017 and the models used was effective in identifying the high and low risk areas of dengue incidence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gubler, D.J.: Dengue and dengue hemorrhagic fever. Clin. Microbiol. Rev. 11(3), 480–496 (1998)

    Google Scholar 

  2. Ong, S.-Q.: Dengue vector control in malaysia: a review for current and alternative strategies. Sains Malaysiana 45(5), 777–785 (2016)

    Google Scholar 

  3. Besag, J., York, J., Mollié, A.: Bayesian image restoration, with two applications in spatial statistics. Ann. Inst. Stat. Math. 43(1), 1–20 (1991)

    MathSciNet  MATH  Google Scholar 

  4. Bernardinelli, L., Clayton, D., Pascutto, C., Montomoli, C., Ghislandi, M., Songini, M.: Bayesian analysis of space-time variation in disease risk. Stat. Med. 14(21–22), 2433–2443 (1995)

    Google Scholar 

  5. Assuncao, R.M., Reis, I.A., Oliveira, C.D.L.: Diffusion and prediction of Leishmaniasis in a large metropolitan area in Brazil with a bayesian space-time model. Stat. Med. 20(15), 2319–2335 (2001)

    Google Scholar 

  6. Knorr-Held, L.: Bayesian modelling of inseparable space-time variation in disease risk. Stat. Med. 19(17–18), 2555–2567 (2000)

    Google Scholar 

  7. Ugarte, M., Goicoa, T., Ibanez, B., Militino, A.: Evaluating the performance of spatio-temporal bayesian models in disease mapping. Environ. Official J. Int. Environ. Soc. 20(6), 647–665 (2009)

    MathSciNet  Google Scholar 

  8. Martínez-Beneito, M.A., López-Quilez, A., Botella-Rocamora, P.: An autoregressive approach to spatio-temporal disease mapping. Stat. Med. 27(15), 2874–2889 (2008)

    MathSciNet  Google Scholar 

  9. Lindgren, F., Rue, H., Lindström, J.: An explicit link between gaussian fields and gaussian markov random fields: the stochastic partial differential equation approach. J. Royal Stat. Soc. Ser. B (Stat. Methodol.) 73(4), 423–498 (2011)

    MathSciNet  MATH  Google Scholar 

  10. Blangiardo, M., Cameletti, M., Baio, G., Rue, H.: Spatial and spatio-temporal models with R-INLA. Spatial Spatio-Temp. Epidemiol. 4, 33–49 (2013)

    Google Scholar 

  11. Coly, S., Charras-Garrido, M., Abrial, D., Yao-Lafourcade, A.-F.: Spatiotemporal disease mapping applied to infectious diseases. Proc. Environ. Sci. 26, 32–37 (2015)

    Google Scholar 

  12. Aswi, A., Cramb, S., Duncan, E., Hu, W., White, G., Mengersen, K.: Climate variability and dengue fever in Makassar, Indonesia: Bayesian spatio-temporal modelling. Spatial Spatio-Temp. Epidemiol. 33, 100335 (2020)

    Google Scholar 

  13. Denis, M., Cochard, B., Syahputra, I., De Franqueville, H., Tisné, S.: Evaluation of spatio-temporal Bayesian models for the spread of infectious diseases in oil palm. Spatial Spatio-Temp. Epidemiol. 24, 63–74 (2018)

    Google Scholar 

  14. Parpia, A.S., Skrip, L.A., Nsoesie, E.O., Ngwa, M.C., Abah, A.S.A., Galvani, A.P., Ndeffo-Mbah, M.L.: Spatio-temporal dynamics of measles outbreaks in Cameroon. Ann. Epidemiol. 42, 64–72 (2020)

    Google Scholar 

  15. Lee, H.: Stochastic and spatio-temporal analysis of the Middle East Respiratory Syndrome outbreak in South Korea, 2015. Infect. Disease Modell. 4, 227–238 (2019)

    Google Scholar 

  16. Liao, J., Qin, Z., Zuo, Z., Yu, S., Zhang, J.: Spatial-temporal mapping of hand foot and mouth disease and the long-term effects associated with climate and socio-economic variables in Sichuan Province, China from 2009 to 2013. Sci. Total Environ. 563, 152–159 (2016)

    Google Scholar 

  17. Abd Naeeim, N.S., Rahman, N.A.: Estimating relative risk for dengue disease in Peninsular Malaysia using INLA. Malays. J. Fund. Appl. Sci 13, 721–727 (2017)

    Google Scholar 

  18. Blangiardo, M., Cameletti, M.: Spatial and Spatio-Temporal Bayesian Models with R-INLA, 1st edn. John Wiley & Sons, United Kingdom (2015)

    MATH  Google Scholar 

  19. Clayton, D., Kaldor, J.: Empirical bayes estimates of age-standardized relative risks for use in disease mapping. Biometrics, 671–681 (1987)

  20. Marshall, R.J.: Mapping disease and mortality rates using empirical bayes estimators. Appl. Stat. 283–294 (1991)

  21. Lahiri, P., Maiti, T.: Empirical bayes estimation of relative risks in disease mapping. Calcutta Statist. Assoc. Bull. 53(3–4), 213–224 (2002)

    MathSciNet  MATH  Google Scholar 

  22. MacNab, Y.C., Farrell, P.J., Gustafson, P., Wen, S.: Estimation in bayesian disease mapping. Biometrics 60(4), 865–873 (2004)

    MathSciNet  MATH  Google Scholar 

  23. Wakefield, J.: Disease mapping and spatial regression with count data. Biostatistics 8(2), 158–183 (2006)

    MATH  Google Scholar 

  24. Rue, H., Martino, S., Chopin, N.: Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J. Royal Stat. Soc. Ser. B (Stat. Methodol.) 71(2), 319–392 (2009)

    MathSciNet  MATH  Google Scholar 

  25. Bakka, H., Rue, H., Fuglstad, G.A., Riebler, A., Bolin, D., Illian, J., Krainski, E., Simpson, D., Lindgren, F.: Spatial modeling with r-inla: A review. Wiley Interdiscip. Rev. Comput. Stat. 10(6), 1443 (2018)

    MathSciNet  Google Scholar 

  26. Aswi, A., Cramb, S., Moraga, P., Mengersen, K.: Bayesian spatial and spatio-temporal approaches to modelling dengue fever: a systematic review. Epidemiol. Infect. 147(33), 1–14 (2019)

    Google Scholar 

  27. Lowe, R., Bailey, T.C., Stephenson, D.B., Graham, R.J., Coelho, C.A.S., Sá Carvalho, M., Barcellos, C.: Spatio-temporal modelling of climate-sensitive disease risk: Towards an early warning system for dengue in Brazil. Comput. Geosci. 37(3), 371–381 (2011). (Geoinformatics for Environmental Surveillance)

    Google Scholar 

  28. Jaya, I., Abdullah, A.S., Hermawan, E., Ruchjana, B.: Bayesian spatial modeling and mapping of dengue fever: a case study of dengue Feverin the city of Bandung, Indonesia. Int. J. Appl. Math. Stat. 54(3), 94–103 (2016)

    MathSciNet  Google Scholar 

  29. Kikuti, M., Cunha, G.M., Paploski, I.A., Kasper, A.M., Silva, M.M., Tavares, A.S., Cruz, J.S., Queiroz, T.L., Rodrigues, M.S., Santana, P.M., et al.: Spatial distribution of dengue in a Brazilian urban slum setting: Role of socioeconomic gradient in disease risk. PLoS Negl. Trop. Dis. 9(7), 0003937 (2015)

    Google Scholar 

  30. Wijayanti, S.P., Porphyre, T., Chase-Topping, M., Rainey, S.M., McFarlane, M., Schnettler, E., Biek, R., Kohl, A.: The importance of socio-economic versus environmental risk factors for reported dengue cases in Java. Indonesia. PLoS Neglected Trop. Diseases 10(9), 0004964 (2016)

    Google Scholar 

  31. Martínez-Bello, D., López-Quílez, A., Prieto, A.T.: Spatiotemporal modeling of relative risk of dengue disease in colombia. Stoch. Env. Res. Risk Assess. 32(6), 1587–1601 (2018)

    Google Scholar 

  32. Sani, A., Abapihi, B., Mukhsar, M., Kadir, K.: Relative risk analysis of dengue cases using convolution extended into spatio-temporal model. J. Appl. Stat. 42(11), 2509–2519 (2015)

    MathSciNet  MATH  Google Scholar 

  33. Martínez-Bello, D.A., Lopez-Quilez, A., Prieto, A.T.: Relative risk estimation of dengue disease at small spatial scale. Int. J. Health Geogr. 16(1), 1–15 (2017)

    Google Scholar 

  34. Abd Naeeim, N.S., Rahman, N.A.: Fitting spatio-temporal model with different choice of dependence matrices: A case study of dengue incidence in Peninsular Malaysia. In: AIP Conference Proceedings, vol. 2184, p. 050033 (2019). AIP Publishing LLC

  35. Abd Naeeim, N.S., Abdul Rahman, N., Muhammad Fahimi, F.A.: A spatial-temporal study of dengue in Peninsular Malaysia for the year 2017 in two different space-time model. J. Appl. Stat. 47(4), 739–756 (2020)

    MathSciNet  MATH  Google Scholar 

  36. Shaddick, G., Zidek, J.V.: Spatio-Temporal Methods in Environmental Epidemiology. Chapman and Hall/CRC, London (2015)

    MATH  Google Scholar 

  37. Leroux, B.G., Lei, X., Breslow, N.: Estimation of disease rates in small areas: a new mixed model for spatial dependence. In: Statistical Models in Epidemiology, the Environment, and Clinical Trials, pp. 179–191. Springer (2000)

  38. Rue, H., Held, L.: Gaussian Markov Random Fields: Theory and Applications. CRC Press, Boca Raton (2005)

    MATH  Google Scholar 

  39. Ugarte, M.D., Adin, A., Goicoa, T., Militino, A.F.: On fitting spatio-temporal disease mapping models using approximate bayesian inference. Stat. Methods Med. Res. 23(6), 507–530 (2014)

    MathSciNet  Google Scholar 

  40. Bernardinelli, L., Clayton, D., Montomoli, C.: Bayesian estimates of disease maps: how important are priors? Stat. Med. 14(21–22), 2411–2431 (1995)

    Google Scholar 

  41. Spiegelhalter, D.J., Best, N.G., Carlin, B.P., Van Der Linde, A.: Bayesian measures of model complexity and fit. J. Royal Stat. Soc. Ser. B (Stat. Methodol.) 64(4), 583–639 (2002)

    MathSciNet  MATH  Google Scholar 

  42. Richardson, S., Thomson, A., Best, N., Elliott, P.: Interpreting posterior relative risk estimates in disease-mapping studies. Environ. Health Perspect. 112(9), 1016 (2004)

    Google Scholar 

Download references

Acknowledgements

Special thanks to Vector Borne Disease Sector, Ministry of Health Malaysia, for the dengue disease data provided in this study. Acknowledgement to Ministry of Higher Education Malaysia for Fundamental Research Grant Scheme with Project Code: FRGS/1/2018/STG06/USM/02/12. We also thank the reviewers and editors of Bulletin of the Malaysian Mathematical Sciences Society for their valuable comments with preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuzlinda Abdul Rahman.

Additional information

Communicated by Anton Abdulbasah Kamil.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A Map and District ID of Peninsular Malaysia

Appendix A Map and District ID of Peninsular Malaysia

See Fig. 7 and Table 6.

Table 6 ID number for districts in peninsular Malaysia

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abd Naeeim, N.S., Abdul Rahman, N. & Md. Ghani, N.A. Spatio-Temporal Modelling of Dengue Fever Patterns in Peninsular Malaysia from 2015–2017. Bull. Malays. Math. Sci. Soc. 45 (Suppl 1), 345–364 (2022). https://doi.org/10.1007/s40840-022-01313-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40840-022-01313-0

Keywords

Mathematics Subject Classification

Navigation