Skip to main content
Log in

Optimization Extraction of Scandium from Scandium Concentrate with Titanium Dioxide Wastewater by Response Surface Methodology

  • Research Article
  • Published:
Journal of Sustainable Metallurgy Aims and scope Submit manuscript

Abstract

Scandium concentrate and titanium dioxide wastewater (TDWW) all belong to waste, especially TDWW belongs to hazardous waste, it is urgent to find a more efficient and safer treatment method to deal with them, and both waste acid and waste ore contain scandium. The use of waste acid as a leaching agent can achieve the synergistic recovery effect of scandium. First, the leaching temperature, time, and liquid–solid ratio are found to be significant factors through single-factor tests. Then, the test program is designed by using the Box Behnken unit of Design Expert software to explore the relationship between each factor including leaching temperature (℃), leaching time (h), and liquid-to-solid ratio (mL/g). The results show that the interaction between leaching time and liquid–solid ratio was the strongest. The second-order regression model equation generated by the software can well predict the leaching effect of scandium. The scandium leaching efficiency reaches 85.30%, and the scandium content in the leaching residue decreases to 10.24 g/t under the optimal conditions: leaching temperature of 70 ℃, leaching time of 2.0 h, and liquid–solid ratio 8.7 mL/g. The finite element analysis is to simulate the mineral roasting process and the temperature field changes are always present.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Williams-Jones AE, Vasyukova OV (2018) The economic geology of scandium, the runt of the rare earth element litter. Econ Geol 113:973–988. https://doi.org/10.5382/econgeo.2018.4579

    Article  Google Scholar 

  2. Xu DD, Shah Z, Cui Y, Jin LM, Peng XJ, Zhang H, Sun GX (2018) Recovery of rare earths from nitric acid leach solutions of phosphate ores using solvent extraction with a new amide extractant (TODGA). Hydrometallurgy 180:132–138. https://doi.org/10.1016/j.hydromet.2018.07.005

    Article  CAS  Google Scholar 

  3. Zhou J, Ma SY, Ning CYD, SY, Wei YZ, Fujita T, (2021) Recovery of scandium from red mud by leaching with titanium white waste acid and solvent extraction with P204. Hydrometallurgy 204:105724. https://doi.org/10.1016/j.hydromet.2021.105724

    Article  CAS  Google Scholar 

  4. Rychkov VN, Semenishchev VS, Mashkovtsev MA, Kirillov EV, Kirillov SV, Botalov BGM, MS, (2016) Deactivation of the scandium concentrate recovered from uranium leach liquors. J Radioanal Nucl Chem 310:1247–1253. https://doi.org/10.1007/s10967-016-4990-3

    Article  CAS  Google Scholar 

  5. Kostikova GV, Mal’tseva IE, Zhilov VI (2019) Extraction recovery of scandium and concomitant elements with isoamyldialkylphosphine oxide from different media. Russ J Inorg Chem 64:277–282. https://doi.org/10.1134/S0036023619020128

    Article  CAS  Google Scholar 

  6. Zou K, Xiao JH, Liang GJ, Huang WX, Xiong WL (2021) Effective extraction of vanadium from bauxite-type vanadium ore using roasting and leaching. Metals 11:1342. https://doi.org/10.3390/met11091342

    Article  CAS  Google Scholar 

  7. Tsakanika LA, Panagiotatos G, Lymperopoulou T, Chatzitheodoridis E, Ochsenkuhn K, Ochsenkuhn-Petropoulou M (2021) Direct phosphoric acid leaching of bauxite residue for selective scandium extraction. Metals 12:228. https://doi.org/10.3390/met12020228

    Article  CAS  Google Scholar 

  8. Zhang B, Xue XX, Yang H (2022) A novel process for recovery of scandium, rare earth and niobium from Bayan Obo tailings: NaCl-Ca(OH)2-coal roasting and acid leaching. Miner Eng 178:107401. https://doi.org/10.1016/j.mineng.2022.107401

    Article  CAS  Google Scholar 

  9. Zhou ZG, Ma BZ, Wang CY, Chen YQ, Zhang WJ, Huang K (2022) Enrichment of scandium and aluminum from limonitic laterite during the nitric acid pressure leaching process. Hydrometallurgy 208:105819. https://doi.org/10.1016/j.hydromet.2022.105819

    Article  CAS  Google Scholar 

  10. Xiao JH, Peng Y, Ding W, Chen T, Zou K, Wang Z (2020) Recovering scandium from scandium rough concentrate using roasting-hydrolysis-leaching process. Processes 8:365. https://doi.org/10.3390/pr8030365

    Article  CAS  Google Scholar 

  11. Zhang N, Li HX, Liu XM (2016) Recovery of scandium from bauxite residue-red mud: a review. Rare Met 35:887–900. https://doi.org/10.1007/s12598-016-0805-5

    Article  CAS  Google Scholar 

  12. Zeters EM, Kaya S, Dittrich C, Forsberg K (2019) Recovery of scandium by crystallization techniques. J Sustain Metall 5:48–56. https://doi.org/10.1007/s40831-019-00210-4

    Article  Google Scholar 

  13. Zaman AU, Lehmann S (2013) The zero waste index: a performance measurement tool for waste management systems in a “zero waste city.” J Cleaner Prod 50:123–132. https://doi.org/10.1016/j.jclepro.2012.11.041

    Article  Google Scholar 

  14. Tanvar H, Mishra B (2023) Extraction of titanium, aluminum, and rare earth values from upgraded bauxite residue. J Sustain Metall 9:665–677. https://doi.org/10.1007/s40831-023-00678-1

    Article  Google Scholar 

  15. Krishnan S, Zulkapli NS, Kamyab H, Taib SM, Din MMFB, Majid ZA, Chaiprapat S, Kenzo I, Ichikawa Y, Nasrullah M, Chelliapan S, Othman N (2021) Current technologies for recovery of metals from industrial wastes: an overview. Environ Technol Innovation 22:101525. https://doi.org/10.1016/j.eti.2021.101525

    Article  CAS  Google Scholar 

  16. Yin Q, Wang YD, Xu ZH, Wan KD, Wang DL (2022) Factors influencing green transformation efficiency in China’s mineral resource-based cities: method analysis based on IPAT-E and PLS-SEM. J Cleaner Prod 330:129783. https://doi.org/10.1016/j.jclepro.2021.129783

    Article  Google Scholar 

  17. Ilyas M, Ahmad W, Khan H, Yousaf S, Yasir M, Khan A (2019) Environmental and health impacts of industrial wastewater effluents in Pakistan: a review. Rev Environ Health 34:171–186. https://doi.org/10.1515/reveh-2018-0078

    Article  CAS  PubMed  Google Scholar 

  18. Gu BX, Tang XY, Liu LX, Li YY, Fujiwara T, Sun HH, Gu AJ, Yao YB, Duan RY, Song J, Jia RF (2021) The recyclable waste recycling potential towards zero waste cities—a comparison of three cities in China. J Cleaner Prod 295:126358. https://doi.org/10.1016/j.jclepro.2021.126358

    Article  Google Scholar 

  19. Zhang WG, Zhang TG, Li TT, Lv GZ, Cao XJ (2021) Basic research on the leaching behavior of vanadium-bearing steel slag with titanium white waste acid. J Environ Chem Eng 9:104897. https://doi.org/10.1016/j.jece.2020.104897

    Article  CAS  Google Scholar 

  20. Yan P, Zhang GF, Yang YD, McLean A (2019) Characterization and pre-concentration of scandium in low-grade magnetite ore. JOM 71:4666–4673. https://doi.org/10.1007/s11837-019-03541-5

    Article  ADS  CAS  Google Scholar 

  21. Salman AD, Jalhoom MG, Le PC, Abdullah TA, Cretescu I, Domokos E, Nguyen VH (2022) Potential application of macrocyclic compounds for selective recovery of rare earth scandium elements from aqueous media. J Sustain Metall 8:135–147. https://doi.org/10.1007/s40831-021-00484-7

    Article  Google Scholar 

  22. Zhou KG, Teng CY, Zhang XK, Peng CH, Chen W (2018) Enhanced selective leaching of scandium from red mud. Hydrometallurgy 182:57–63. https://doi.org/10.1016/j.hydromet.2018.10.011

    Article  CAS  Google Scholar 

  23. Alman-Abad ZS, Pirkharrati H, Asadzadeh F, Maleki-Kakelar M (2020) Application of response surface methodology for optimization of zinc elimination from a polluted soil using tartaric acid. Adsorpt Sci Technol 38:79–93. https://doi.org/10.1177/0263617420916592

    Article  CAS  Google Scholar 

  24. Nie HP, Wang YB, Wang YL, Zhao ZY, Dong YM, Sun XQ (2018) Recovery of scandium from leaching solutions of tungsten residue using solvent extraction with Cyanex 572. Hydrometallurgy 175:117–123. https://doi.org/10.1016/j.hydromet.2017.10.026

    Article  CAS  Google Scholar 

  25. Hidayat MIP, Felicia DM, Rafandi FI, Machmudah A (2020) Effects of sample shapes and thickness on distribution of temperature inside the mineral ilmenite due to microwave heating. Minerals 10:382. https://doi.org/10.3390/min10040382

    Article  ADS  Google Scholar 

  26. Xiao JH, Zou K, Chen T, Peng Y, Ding W, Chen JH, Deng B, Li H, Wang Z (2021) Extraction of Sc from Sc-bearing V-Ti magnetite tailings. JOM 73:1836–1844. https://doi.org/10.1007/s11837-021-04665-3

    Article  ADS  CAS  Google Scholar 

  27. Alkhatib MF, Mamun AA, Akbar I (2015) Application of response surface methodology (RSM) for optimization of color removal from POME by granular activated carbon. Int J Environ Sci Technol 12:1295–1302. https://doi.org/10.1007/s13762-014-0504-4

    Article  CAS  Google Scholar 

  28. Fathianpour A, Taheriyoun M, Soleimani M (2018) Lead and zinc stabilization of soil using sewage sludge biochar: optimization through response surface methodology. Clean-Soil Air Water 46:1700429. https://doi.org/10.1002/clen.201700429

    Article  CAS  Google Scholar 

  29. Luo YG, Zhang WF, Li J, Zhang LB, Zou JT, Hu JM, Yang LF, Xi YH, Liao TQ (2019) Optimization of uranium removal from uranium plant wastewater by response surface methodology (RSM). Green Process Synth 8:808–813. https://doi.org/10.1515/gps-2019-0050

    Article  CAS  Google Scholar 

  30. Sahlabad MK, Javanshir S, Honarmand M (2022) Improvement in atmospheric leaching of chalcopyrite concentrate using a new environmentally-friendly ionic liquid. Hydrometallurgy 211:105893. https://doi.org/10.1016/j.hydromet.2022.105893

    Article  CAS  Google Scholar 

  31. Martire S, Castellani V, Sala S (2015) Carrying capacity assessment of forest resources: enhancing environmental sustainability in energy production at local scale. Resour Conserv Recycl 94:11–20. https://doi.org/10.1016/j.resconrec.2014.11.002

    Article  Google Scholar 

  32. Anawati J, Azimi G (2019) Recovery of scandium from Canadian bauxite residue utilizing acid baking followed by water leaching. Waste Manage 95:549–559. https://doi.org/10.1016/j.wasman.2019.06.044

    Article  CAS  Google Scholar 

  33. Xiao JH, Zou K, Zhong NL, Gao DQ (2023) Selective separation of iron and scandium from Bayer Sc-bearing red mud. J Rare Earths 41:1099–1107. https://doi.org/10.1016/j.jre.2022.06.003

    Article  CAS  Google Scholar 

  34. Ding W, Xiao JH, Peng Y, Shen SY, Chen T (2021) Iron extraction from red mud using roasting with sodium salt. Miner Process Extr Metall Rev 42:153–161. https://doi.org/10.1080/08827508.2019.1706049

    Article  CAS  Google Scholar 

  35. Peng XJ, Li L, Zhang MM, Cui Y, Jiang XC, Sun GX (2023) Preparation of ultra-high pure scandium oxide with crude product from titanium white waste acid. J Rare Earths 41:746–770. https://doi.org/10.1016/j.jre.2022.04.006

    Article  CAS  Google Scholar 

  36. Li RM, Liu T, Zhang YM, Huang J (2018) Mechanism of Novel K2SO4/KCl composite roasting additive for strengthening vanadium extraction from vanadium-titanium magnetite concentrate. Minerals 8:426. https://doi.org/10.3390/min8100426

    Article  ADS  CAS  Google Scholar 

  37. Masoumi H, Ghaemi A, Gilani HG (2021) Synthesis of polystyrene-based hyper-cross-linked polymers for Cd(II) ions removal from aqueous solutions: experimental and RSM modeling. J Hazard Mater 416:125923. https://doi.org/10.1016/j.jhazmat.2021.125923

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by the Technology Innovation Center for Comprehensive Utilization of Strategic Mineral Resources, Ministry of Natural Resources (Grant No.CCUM-KY-2304), the Sichuan Province Central Government Guides Local Funds for Science and Technology Development (Grant Nos. 2023ZYD0028), the Sichuan Science and Technology Program (Grant Nos. 24NSFSC2150 and 2022YFS0509), and Sichuan Province Natural Resources Department project (KJ-2023-003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junhui Xiao.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could influence the work reported in this study.

Additional information

The contributing editor for this article was Grace Ofori-Sarpong.

Publisher's Note

Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, J., Zhong, N., Cheng, R. et al. Optimization Extraction of Scandium from Scandium Concentrate with Titanium Dioxide Wastewater by Response Surface Methodology. J. Sustain. Metall. 10, 278–295 (2024). https://doi.org/10.1007/s40831-024-00794-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40831-024-00794-6

Keywords

Navigation