Skip to main content
Log in

Chlorination Roasting of Li-Bearing Minerals and Slags: Combined Evaluation of Lithium Recovery Ratio and Lithium Chloride Product Purity

  • Research Article
  • Published:
Journal of Sustainable Metallurgy Aims and scope Submit manuscript

Abstract

Lithium was recovered from both Li-bearing minerals (kunzite, hiddenite, and lepidolite) and Li-bearing slags, using a chlorination roasting process at 1100 °C under an argon atmosphere. According to the XRD analysis, gehlenite (Ca2Al2SiO7) and lithium aluminate (LiAlO2) constitute the main phases in the LIB recycling slag. The major mineral phases detected were spodumene (LiAlSi2O6) in the kunzite and hiddenite samples, and lepidolite [K(Li,Al)3(Si,Al)4O10(F,OH)2] in the lepidolite sample, respectively. After the chlorination roasting, 47%, 38%, 56%, and 90% of the available Li was extracted as a LiCl product from, respectively, kunzite, hiddenite, lepidolite, and LIB recycling slag. The Li recovery ratio is dependent on the Li2O content, the type of Li-containing phase and the impurities in each of the Li-containing materials. In addition, the distribution of the main impurity elements—such as K, Na, Mn, and Fe—between the vaporized chloride gas and the solid residue after the chlorination roasting was analyzed to evaluate the purity of the obtained Li product (i.e., LiCl). The LiCl·H2O phase was identified in the condensed product sample due to the strong hygroscopicity of the LiCl product. The LiCl purity was measured to be 89%, 93%, 77%, and 22% for the chlorination products extracted from the LIB recycling slag, kunzite, hiddenite and lepidolite samples, respectively. The experimental results indicate that especially the Li-ion battery (LIB) recycling slag shows a great potential as an alternative (secondary) Li-bearing resource for the production of high-purity, “technical-grade” LiCl (~ 90%), adopting a chlorination roasting process. Finally, even in the case a pure LiCl product is obtained from the chlorination roasting process, a further refining process is required to purify the “technical-grade” LiCl quality (e.g. 90% purity) into a battery-grade quality (> 99.5% purity).

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Liu C, Lin J, Cao H, Zhang Y, Sun Z (2019) Recycling of spent lithium-ion batteries in view of lithium recovery: a critical review. J Clean Prod 228:801–813. https://doi.org/10.1016/j.jclepro.2019.04.304

    Article  CAS  Google Scholar 

  2. Lv W, Wang Z, Cao H, Sun Y, Zhang Y, Sun Z (2018) A critical review and analysis on the recycling of spent lithium-ion batteries. ACS Sustain Chem Eng 6:1504–1521. https://doi.org/10.1021/acssuschemeng.7b03811

    Article  CAS  Google Scholar 

  3. Mahandra H, Ghahreman A (2021) A sustainable process for selective recovery of lithium as lithium phosphate from spent LiFePO4 batteries. Resour Conserv Recycl 175:105883. https://doi.org/10.1016/j.resconrec.2021.105883

    Article  CAS  Google Scholar 

  4. Bae H, Kim Y (2021) Technologies of lithium recycling from waste lithium-ion batteries: a review. Mater Adv. https://doi.org/10.1039/D1MA00216C

    Article  Google Scholar 

  5. Brückner L, Frank J, Elwert T (2020) Industrial recycling of lithium-ion batteries—A critical review of metallurgical process routes. Metals 10:1107

    Article  Google Scholar 

  6. Verscheure K, Campforts M, Van Camp M (2011) Process for the valorization of metals from HEV or EV Batteries. WO2011035916A1

  7. Jin S, Mu D, Lu Z, Li R, Liu Z, Wang Y, Tian S, Dai C (2022) A comprehensive review on the recycling of spent lithium-ion batteries: urgent status and technology advances. J Clean Prod 340:130535. https://doi.org/10.1016/j.jclepro.2022.130535

    Article  CAS  Google Scholar 

  8. Kim S, Bang J, Yoo J, Shin Y, Bae J, Jeong J, Kim K, Dong P, Kwon K (2021) A comprehensive review on the pretreatment process in lithium-ion battery recycling. J Clean Prod 294:126329. https://doi.org/10.1016/j.jclepro.2021.126329

    Article  CAS  Google Scholar 

  9. Pinegar H, Smith YR (2019) Recycling of end-of-life lithium ion batteries, part i: commercial processes. J Sustain Metall 5:402–416. https://doi.org/10.1007/s40831-019-00235-9

    Article  Google Scholar 

  10. Pinegar H, Smith YR (2020) Recycling of end-of-life lithium-ion batteries, part II: laboratory-scale research developments in mechanical, thermal, and leaching treatments. J Sustain Metall 6:142–160. https://doi.org/10.1007/s40831-020-00265-8

    Article  Google Scholar 

  11. Thompson DL, Hartley JM, Lambert SM, Shiref M, Harper GD, Kendrick E, Anderson P, Ryder KS, Gaines L, Abbott AP (2020) The importance of design in lithium ion battery recycling—A critical review. Green Chem 22:7585–7603

    Article  CAS  Google Scholar 

  12. Velázquez-Martínez O, Valio J, Santasalo-Aarnio A, Reuter M, Serna-Guerrero R (2019) A critical review of lithium-ion battery recycling processes from a circular economy perspective. Batteries 5:68

    Article  Google Scholar 

  13. Yun L, Linh D, Shui L, Peng X, Garg A, Le MLP, Asghari S, Sandoval J (2018) Metallurgical and mechanical methods for recycling of lithium-ion battery pack for electric vehicles. Resour Conserv Recycl 136:198–208. https://doi.org/10.1016/j.resconrec.2018.04.025

    Article  CAS  Google Scholar 

  14. Verhaeghe F, Goubin F, Yazicioglu B, Schurmans M, Thijs B, Haesebroek G, Tytgat J, Van Camp M (2011) Valorisation of battery recycling slags. 2nd International Slag Valorisation Symposium. pp. 365–373

  15. Quix M, Van Horebeek D, Suetens T (2017) Lithium-rich metallurgical slag. WO2017121663A1

  16. Scheunis L, Callebaut W (2020) Process for the recovery of lithium. WO2020104164A1

  17. Yazicioglu B, Tytgat J (2011) Lithium-bearing slag as aggregate in concrete. WO2011141297A1

  18. Sun X, Hao H, Zhao F, Liu Z (2017) Tracing global lithium flow: a trade-linked material flow analysis. Resour Conserv Recycl 124:50–61. https://doi.org/10.1016/j.resconrec.2017.04.012

    Article  Google Scholar 

  19. Barbosa LI, González JA, Ruiz MdC (2015) Extraction of lithium from β-spodumene using chlorination roasting with calcium chloride. Thermochim Acta 605:63–67. https://doi.org/10.1016/j.tca.2015.02.009

    Article  CAS  Google Scholar 

  20. Barbosa LI, Valente G, Orosco RP, González JA (2014) Lithium extraction from β-spodumene through chlorination with chlorine gas. Miner Eng 56:29–34. https://doi.org/10.1016/j.mineng.2013.10.026

    Article  CAS  Google Scholar 

  21. Medina LF, El-Naggar MMAA (1984) An alternative method for the recovery of lithium from spodumene. Metall Trans B 15:725–726. https://doi.org/10.1007/BF02657295

    Article  CAS  Google Scholar 

  22. Yan Q-x, Li X-h, Wang Z-x, Wang J-x, Guo H-j, Hu Q-y, Peng W-j, Wu X-f (2012) Extraction of lithium from lepidolite using chlorination roasting–water leaching process. Trans Nonferrous Met Soc China 22:1753–1759. https://doi.org/10.1016/S1003-6326(11)61383-6

    Article  CAS  Google Scholar 

  23. Fosu AY, Kanari N, Bartier D, Vaughan J, Chagnes A (2022) Novel extraction route of lithium from α-spodumene by dry chlorination. RSC Adv 12:21468–21481. https://doi.org/10.1039/D2RA03233C

    Article  CAS  Google Scholar 

  24. Kim Y, Han Y, Kim S, Jeon H-S (2021) Green extraction of lithium from waste lithium aluminosilicate glass-ceramics using a water leaching process. Process Saf Environ Prot 148:765–774. https://doi.org/10.1016/j.psep.2021.02.001

    Article  CAS  Google Scholar 

  25. Dang H, Wang B, Chang Z, Wu X, Feng J, Zhou H, Li W, Sun C (2018) Recycled lithium from simulated pyrometallurgical slag by chlorination roasting. ACS Sustain Chem Eng 6:13160–13167. https://doi.org/10.1021/acssuschemeng.8b02713

    Article  CAS  Google Scholar 

  26. Dang H, Li N, Chang Z, Wang B, Zhan Y, Wu X, Liu W, Ali S, Li H, Guo J, Li W, Zhou H, Sun C (2020) Lithium leaching via calcium chloride roasting from simulated pyrometallurgical slag of spent lithium ion battery. Sep Purif Technol 233:116025. https://doi.org/10.1016/j.seppur.2019.116025

    Article  CAS  Google Scholar 

  27. Heo JH, Park SS, Park JH (2012) Effect of slag composition on the distribution behavior of Pb between FetO-SiO2 (-CaO, Al2O3) slag and molten copper. Metall Mater Trans B 43:1098–1105. https://doi.org/10.1007/s11663-012-9701-z

    Article  CAS  Google Scholar 

  28. Heo JH, Kim BS, Park JH (2013) Effect of CaO addition on iron recovery from copper smelting slags by solid carbon. Metall Mater Trans B 44:1352–1363. https://doi.org/10.1007/s11663-013-9908-7

    Article  CAS  Google Scholar 

  29. Heo JH, Chung Y, Park JH (2016) Recovery of iron and removal of hazardous elements from waste copper slag via a novel aluminothermic smelting reduction (ASR) process. J Clean Prod 137:777–787. https://doi.org/10.1016/j.jclepro.2016.07.154

    Article  CAS  Google Scholar 

  30. Skokan A (1990) Phase stability investigations in the ceramic breeder systems Li2O-Al2O3 and Li2O-ZrO2. Fusion technology, vol 1991. Elsevier, Oxford, pp 772–776

    Google Scholar 

  31. Garrett DE (2004) Handbook of lithium and natural calcium chloride. Elsevier Science

    Google Scholar 

  32. Yuan B, Li C, Liang B, Lü L, Yue H, Sheng H, Ye L, Xie H (2015) Extraction of potassium from K-feldspar via the CaCl2 calcination route. Chin J Chem Eng 23:1557–1564. https://doi.org/10.1016/j.cjche.2015.06.012

    Article  CAS  Google Scholar 

  33. Zhang Y, Asselin E, Li Z (2016) Laboratory and pilot scale studies of potassium extraction from k-feldspar decomposition with CaCl2 and CaCO3. J Chem Eng Japan 49:111–119. https://doi.org/10.1252/jcej.15we078

    Article  CAS  Google Scholar 

  34. Avdibegović D, Nguyen VT, Binnemans K (2022) One-step solvometallurgical process for purification of lithium chloride to battery grade. J Sustain Metall 8:893–899. https://doi.org/10.1007/s40831-022-00540-w

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support for the KU Leuven C3 project “Solvometallurgy-based Process for Battery-grade Lithium Refining (SOLVOLi+)” (3E200922) from Industrieel Onderzoeksfonds (IOF), KU Leuven.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jungho Heo.

Ethics declarations

Competing Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

The contributing editor for this article was Hongmin Zhu.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 170 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heo, J., Jones, P.T., Blanpain, B. et al. Chlorination Roasting of Li-Bearing Minerals and Slags: Combined Evaluation of Lithium Recovery Ratio and Lithium Chloride Product Purity. J. Sustain. Metall. 9, 1353–1362 (2023). https://doi.org/10.1007/s40831-023-00729-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40831-023-00729-7

Keywords

Navigation