Skip to main content
Log in

Preparation of Lightweight Calcium Silicate Board with Low Chlorine Dissolution Rate Using Ti-Extracted Blast Furnace Slag and Fly Ash

  • Research Article
  • Published:
Journal of Sustainable Metallurgy Aims and scope Submit manuscript

Abstract

The clean industrial development of titanium extraction from blast furnace slag is of great significance to the development of the titanium industry in China. Ti-extracted blast furnace slag (Ti-extracted BFS) with 3.48 wt% chlorine content is a metallurgical solid waste generated during titanium extraction from high-titanium blast furnace slag. Ti-extracted BFS harms the environment and hampers the sustainable development of the entire vanadium titanium magnetite process. In this study, fly ash was utilized as a light raw material to prepare lightweight calcium silicate boards. The influences of different fly ash and Na2SO4 content on the material properties of the calcium silicate boards were investigated. A Ti-extracted BFS: Portland cement: fly ash: Ca(OH)2: quartz: fume ash weight ratio of 40:15:15:11.4:15:3.6 with 0.5 wt% Na2SO4 content was used to prepare the optimal calcium silicate board sample. The bulk density of this sample was 1.38 g/cm3, and the dissolution rate of chlorine was 0.62%. Moreover, the optimal CaCl2 content accelerated the hydration reaction and improved the bending strength of the prepared dechlorinated Ti-extracted BFS-based samples. These calcium silicate boards were able to fix chloride ions, which was mainly dependent on the adsorption and curing capacity of calcium silicate (aluminate) hydrate gels (C-(A)-S-H). This research suggests a new strategy for the overall utilization of chlorine-containing Ti-extracted BFS and provides essential guidance for utilizing similar slag.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Yu JW, Ou Y, Sun YS, Li YJ, Han YX (2022) Hydrogen reduction behaviors and mechanisms of vanadium titanomagnetite ore under fluidized bed conditions. Powder Technol 402:117340. https://doi.org/10.1016/j.powtec.2022.117340

    Article  CAS  Google Scholar 

  2. Wang S, Guo Y, Jiang T, Yang L, Chen F, Zheng F, Xie X, Tang M (2017) Reduction behaviors of iron, vanadium and titanium oxides in smelting of vanadium titanomagnetite metallized pellets. JOM 69:1646–1653. https://doi.org/10.1007/s11837-017-2367-x

    Article  CAS  Google Scholar 

  3. Li L, Jiang T, Chen BJ, Zhou M, Chen C (2020) Overall utilization of vanadium–titanium magnetite tailings to prepare lightweight foam ceramics. Process Saf Environ Prot 139:305–314

    Article  CAS  Google Scholar 

  4. Chu GR, Wang L, Liu WZ, Zhang GQ, Luo DM, Wang LM, Liang B, Li C (2019) Indirect mineral carbonation of chlorinated tailing derived from Ti-bearing blast-furnace slag coupled with simultaneous dechlorination and recovery of multiple value-added products. Greenhouse Gas Sci Technol 9:52–66. https://doi.org/10.1002/ghg.1832

    Article  CAS  Google Scholar 

  5. Fan GQ, Wang M, Dang J, Zhang R, Lv ZP, He WC, Lv XW (2021) A novel recycling approach for efficient extraction of titanium from high-titanium-bearing blast furnace slag. Waste Manage 120:626–634. https://doi.org/10.1016/j.wasman.2020.10.024

    Article  CAS  Google Scholar 

  6. Han JQ, Zhang J, Zhang JH, Chen X, Zhang L, Tu GF (2021) Extraction of vanadium and enrichment of titanium from modified Ti-bearing blast furnace slag. Hydrometallurgy 201:105577. https://doi.org/10.1016/j.hydromet.2021.105577

    Article  CAS  Google Scholar 

  7. Li L, Jiang T, Chen B, Wen J, Yang G (2022) Preparation and properties of foamed cement for lightweight thermal insulation with Ti-extraction blast furnace slag and sulfoaluminate cement by chemical foaming. Constr Build Mater 337:127634

    Article  CAS  Google Scholar 

  8. Lv XD, Song K, Xin YT, Lv XW (2022) Novel process for deep removal of chlorine and recycling of chlorinated tailings from titanium-bearing blast-furnace slag. Process Saf Environ Prot 159:842–849. https://doi.org/10.1016/j.psep.2022.01.056

    Article  CAS  Google Scholar 

  9. Li L, Jiang T, Chen BJ, Wen J (2021) Overall utilization of Ti-extraction blast furnace slag as a raw building material: removal of chlorine from slag by water washing and sintering. J Sustain Metall 7:1116–1127. https://doi.org/10.1007/s40831-021-00409-4

    Article  Google Scholar 

  10. Sun KK, Xuan DH, Li JJ, Poon CS, Wang SP, Peng HQ, Lv XW, Zheng GW (2022) Effect of the Ti-extracted residue on compressive strength and microstructural properties of modified cement mortar. Constr Build Mater 320:126190. https://doi.org/10.1016/j.conbuildmat.2021.126190

    Article  CAS  Google Scholar 

  11. Cechin L, Mymrine V, A. Avanci M, Povaluk AE, (2022) Ceramics composites from iron ore tailings and blast furnace slag. Ceram Int 48:10506–10515. https://doi.org/10.1016/j.ceramint.2021.12.260

    Article  CAS  Google Scholar 

  12. Shang WX, Peng ZW, Huang YW, Gua FQ, Zhang J, Tang HM, Yang L, Tian WG, Rao MJ, Lia GH, Jiang T (2021) Production of glass-ceramics from metallurgical slags. J Clean Prod 317:128220. https://doi.org/10.1016/j.jclepro.2021.128220

    Article  CAS  Google Scholar 

  13. Zod N, Mucci A, Bahn O, Provençal R, Shao YX (2020) Steel slag-bonded strand board as a carbon-negative building product. Constr Build Mater 340:127695. https://doi.org/10.1016/j.conbuildmat.2022.127695

    Article  CAS  Google Scholar 

  14. Xi CP, Zheng F, Xu JH, Yang WG, Peng YQ, Li Y, Li P, Zhen Q, Bashir S, Louise Liu JB (2018) Preparation of glass-ceramic foams using extracted titanium tailing and glass waste as raw materials. Constr Build Mater 190:896–909. https://doi.org/10.1016/j.conbuildmat.2018.09.170

    Article  CAS  Google Scholar 

  15. Zhang JF, Yan Y, Hu ZH (2018) Preparation and characterization of foamed concrete with Ti-extracted residues and red gypsum. Constr Build Mater 171:109–119. https://doi.org/10.1016/j.conbuildmat.2018.03.072

    Article  CAS  Google Scholar 

  16. Yang YY, Zhou Q, Deng Y, Lin JH (2022) Reinforcement effects of multi-scale hybrid fiber on flexural and fracture behaviors of ultra-low-weight foamed cement-based composites. Cement Concrete Comp 128:104422. https://doi.org/10.1016/j.cemconcomp.2022.104422

    Article  CAS  Google Scholar 

  17. Aygörmez Y (2022) Performance of different binders doped Portland cement-based mortars using volcanic slag, petroleum coke and EPS foam aggregates. Constr Build Mater 336:127538. https://doi.org/10.1016/j.conbuildmat.2022.127538

    Article  CAS  Google Scholar 

  18. Zhan JY, Yang FH, Li WM, Liu X, Wang LJ, Fang GM (2020) Hydration Characteristics and Humidity Control Performance of Calcium Silicate Board Prepared from Mine Tailing and Diatomite. Journal of Wuhan University of Technology-Mater Sci Ed 35:147–154. https://doi.org/10.1007/s11595-020-2238-0

    Article  CAS  Google Scholar 

  19. Miao F, Zhang MH, Yang RD, Shen J (2022) Effect of beating on softwood pulp fber reinforced calcium silicate board. Cellulose 29:4125–4134. https://doi.org/10.1007/s10570-022-04526-5

    Article  CAS  Google Scholar 

  20. Hossain SKS, Roy PK (2019) Development of sustainable calcium silicate board: utilization of different solid wastes. Bol Soc Esp De Cerám V 58:274–284. https://doi.org/10.1016/j.bsecv.2019.06.003

    Article  CAS  Google Scholar 

  21. Cheng Q (2020) Discussion on the development of fiber cement board/ calcium silicate board. China Concrete 8:48–54

    Google Scholar 

  22. Cao Z, Cao YD, Zhang JS, Sun CB, Li XL (2015) Preparation and characterization of high-strength calcium silicate boards from coal-fired industrial solid wastes. Int J Min Met Mater 22:892. https://doi.org/10.1007/s12613-015-1147-2

    Article  CAS  Google Scholar 

  23. Li L, Jiang T, Chen BJ, Wen J, Yang GD (2022) Recycling of Ti-extraction blast furnace slag: preparation of calcium silicate board with high slag content by steam pressure curing, process. Saf Environ Prot 158:432–444

    Article  CAS  Google Scholar 

  24. Dembovska L, Bajare D, Ducman V, Korat L, Bumanis G (2017) The use of different by-products in the production of lightweight alkali activated building materials. Constr Build Mater 135:315–322. https://doi.org/10.1016/j.conbuildmat.2017.01.005

    Article  CAS  Google Scholar 

  25. Bergmann Becker PE, Efftingm C, Schackow A (2022) Lightweight thermal insulating coating mortars with aerogel, EPS, and vermiculite for energy conservation in buildings. Cem Concrete Comput 125:104283. https://doi.org/10.1016/j.cemconcomp.2021.104283

    Article  CAS  Google Scholar 

  26. Andrea H, Christopher H (2005) Physicochemical characterization of a hydrated calcium silicate board material. J Build Phys 29:9–18

    Article  Google Scholar 

  27. Kobayashi K, Nakamura H, Yamaguchi A, Itakura M, Machida M, Okumura M (2021) Machine learning potentials for tobermorite minerals. Comput Mater Sci 188:110173. https://doi.org/10.1016/j.commatsci.2020.110173

    Article  CAS  Google Scholar 

  28. Fu JY, Bligh MW, Shikhov I, Jones AM, Holt C, Keyte LM, Moghaddam F, Arns CH, Foster SJ, Waite TD (2021) A microstructural investigation of a Na2SO4 activated cement-slag blend. Cem Concrete Res 150:106609. https://doi.org/10.1016/j.cemconres.2021.106609

    Article  CAS  Google Scholar 

  29. Long WJ, Xie J, Zhang XH, Kou SC, Xing F, He C (2022) Accelerating effect of calcined hydrotalcite-Na2SO4 binary system on hydration of high volume fly ash cement. Constr Build Mater 328:127068. https://doi.org/10.1016/j.conbuildmat.2022.127068

    Article  CAS  Google Scholar 

  30. Baldermann A, Preissegger V, Šimić S, Letofsky-Papst I, Mittermayr F, Dietzel M (2021) Uptake of aqueous heavy metal ions (Co2+, Cu2+ and Zn2+) by calcium-aluminium-silicate-hydrate gels. Cement Concrete Res 147:106521. https://doi.org/10.1016/j.cemconres.2021.106521

    Article  CAS  Google Scholar 

  31. Cao YZ, Guo LP, Chen B, Wu JD (2020) Thermodynamic modelling and experimental investigation on chloride binding in cement exposed to chloride and chloride-sulfate solution. Constr Build Mater 246:118398. https://doi.org/10.1016/j.conbuildmat.2020.118398

    Article  CAS  Google Scholar 

  32. Zibara H, Hooton RD, Thomas MDA, Stanish K (2008) Influence of the C/S and C/A ratios of hydration products on the chloride ion binding capacity of lime-SF and lime-MK mixtures. Constr Build Mater 38:422–429. https://doi.org/10.1016/j.cemconres.2007.08.024

    Article  CAS  Google Scholar 

  33. Chen Y, Yu H, Zhu BL, Wei DX (2016) Laboratory investigation of the strength development of alkali-activated slag-stabilized chloride saline soil. J Zhejiang Univ Sci Acad 17:389–398

    Article  Google Scholar 

  34. Wang ZH, Ma SH, Zheng SL, Ding J, Wang XH (2019) Flexural strength and thermal conductivity of fiber-reinforced calcium silicate boards prepared from fly ash. J Mater Civil Eng 31:04019140

    Article  CAS  Google Scholar 

  35. Liu H, Zhao XP (2022) Thermal conductivity analysis of high porosity structures with open and closed pores. Int J Heat Mass Trans 183:122089. https://doi.org/10.1016/j.ijheatmasstransfer.2021.122089

    Article  CAS  Google Scholar 

  36. Hamilton A, Hall C (2005) Physicochemical characterization of a hydrated calcium silicate board material. J Build Phys 29:9–19

  37. Galvánková L, Másilko J, Solny´ T, Štěpánková E, (2016) Tobermorite synthesis under hydrothermal conditions. Procedia Eng 151:100–107. https://doi.org/10.1016/j.proeng.2016.07.394

    Article  CAS  Google Scholar 

  38. Mishra J, Nanda B, Patro SK, Das SK, Mustakim SM (2020) Strength and microstructural characterization of ferrochrome ash- and ground granulated blast furnace slag-based geopolymer concrete. J Sustain Metall 8:156–159

    Article  Google Scholar 

  39. Liu X, Feng P, Cai YX, Yu XH, Liu Q (2022) Carbonation behaviors of calcium silicate hydrate (C-S-H): effects of aluminum. Constr Build Mater 325:126825. https://doi.org/10.1016/j.conbuildmat.2022.126825

    Article  CAS  Google Scholar 

  40. Qi F, Sun J, Zhu GY, Li HQ, Wu YJ, Li SP, Yang CN, Zheng J, Zhang YM (2020) Recycling of blast furnace slag to prepare calcium silicate hydrate by mechanical-chemical co-activation and its application to calcium silicate fireproof board. Process Saf Environ Prot 165:1–12. https://doi.org/10.1016/j.psep.2022.06.062

    Article  CAS  Google Scholar 

  41. Li JQ, Zhang WX, Garbev K, Beuchle G, Monteiro JMP (2020) Influences of cross-linking and Al incorporation on the intrinsic mechanical properties of tobermorite. Cem Concrete Res 136:6170. https://doi.org/10.1016/j.cemconres.2020.106170

    Article  CAS  Google Scholar 

  42. Liu X, Zhang WB, Qi YY, Han PJ (2014) Mechanism analysis of the effects of sodium sulfateon the strength of cement soil, China. Sciencepaper 9:346–350

    CAS  Google Scholar 

  43. Xiao Q, Wu YH, Nan F, He YS, Li L (2013) Effect of different kinds of admixture on process of cement hydration under steam-curing. Bull Chin Ceram Soc 32:1165–1170

    CAS  Google Scholar 

  44. Joseph S, Snellings R, Cizer Ö (2019) Activation of Portland cement blended with high volume of fly ash using Na2SO4. Cement Concrete Comp 104:103417. https://doi.org/10.1016/j.cemconcomp.2019.103417

    Article  CAS  Google Scholar 

  45. Criado M, Jiménez AF, Palomo A (2010) Effect of sodium sulfate on the alkali activation of fly ash. Cement Concrete Comp 32:589–594. https://doi.org/10.1016/j.cemconcomp.2010.05.002

    Article  CAS  Google Scholar 

  46. Xia Y, Liu MH, Zhao YD, Ma XB (2022) Microstructure of Portland cement blended with high dosage of sewage sludge ash activated by Na2SO4. J Clean Prod 341:131568. https://doi.org/10.1016/j.jclepro.2022.131568

    Article  CAS  Google Scholar 

  47. Ríos CA, Williams CD, Fullen MA (2009) Hydrothermal synthesis of hydrogarnet and tobermorite at 175 °C from kaolinite and metakaolinite in the CaO-Al2O3-SiO2-H2O system: a comparative study. Appl Clay Sci 43:228–237

  48. Steger L, Blotevogel S, Frouin L, Patapy C, Cyr M (2021) Experimental evidence for the acceleration of slag hydration in blended cements by the addition of CaCl2. Cement Concrete Res 149:6558. https://doi.org/10.1016/j.cemconres.2021.106558

    Article  CAS  Google Scholar 

  49. Bellmann F, Stark J (2009) Activation of blast furnace slag by a new method. Cem Concr Res 39:644–650. https://doi.org/10.1016/j.cemconres.2009.05.012

    Article  CAS  Google Scholar 

  50. Yuan JG, Li SS, Yan JH, Wang SD, Lu LC, Cheng X (2021) Constituent phases optimization of modified sulphoaluminate cement and its characteristic of Cl solidification and resistance to marine erosion. Constr Build Mater 311:125320. https://doi.org/10.1016/j.conbuildmat.2021.125320

    Article  CAS  Google Scholar 

  51. Das SK, Dan AK, Behera U, Tripathi AK, Behari M, Das D, Parhi PK (2021) A novel approach on leaching study for removal of toxic elements from thermal power plant-based fly ash using natural bio-surfactant. Case Stud Chem Environ Eng 4:100156. https://doi.org/10.1016/j.cscee.2021.100156

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51874077 and 52174277), and the Fundamental Research Funds for the Central Universities (No. N2225004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Jiang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

The contributing editor for this article was Hiromichi Takebe.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Jiang, T., Wen, J. et al. Preparation of Lightweight Calcium Silicate Board with Low Chlorine Dissolution Rate Using Ti-Extracted Blast Furnace Slag and Fly Ash. J. Sustain. Metall. 9, 1084–1098 (2023). https://doi.org/10.1007/s40831-023-00711-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40831-023-00711-3

Keywords

Navigation