Skip to main content
Log in

Numerical Simulation and Optimization Analysis of Primary Air Injection Mode in Oxygen-Rich Side-Blown Bath Smelting Furnace

  • Research Article
  • Published:
Journal of Sustainable Metallurgy Aims and scope Submit manuscript

Abstract

Appropriate primary air injection mode (PAIM) is the key to ensure high smelting efficiency of oxygen-rich side-blown bath smelting furnace (OSBF). In this study, the influence of PAIM on the gas–liquid multiphase flow in the OSBF was investigated by numerical simulation. The PAIM including number of nozzles, nozzle insertion length, nozzle tilt angle, and nozzle diameter was optimized by orthogonal test design. The results indicate that the order of the influence of PAIM on the OSBF process is nozzle insertion length, nozzle diameter, nozzle tilt angle, and nozzle number. The optimum conditions of PAIM were determined as number of nozzles: 8, nozzle insertion length: 0.12 m, nozzle tilt angle: 0°, and nozzle diameter: 0.03 m, and the smelting efficiency was improved by 45% compared to the practical conditions. Furthermore, it was verified that the optimum conditions of PAIM effectively improved the smelting efficiency of the OSBF by physical model experiments.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

Data available on request from the authors. The data that support the findings of this study are available from the corresponding author, [Desheng Chen], upon reasonable request.

References

  1. Li DB, Chen XG, Wang ZS (2019) Modern side-blown smelting technology for nonferrous metals. Metallurgical Industry Press, Beijing

    Google Scholar 

  2. Romenets VA, Valavin VS, Pokhvisnev YV, Makeev SA, Gimmelfarb AI (2010) Use of the innovative Romelt technology to process iron-bearing wastes from mines and metallurgical plants. Metallurgist 54:273–277. https://doi.org/10.1007/s11015-010-9292-3

    Article  CAS  Google Scholar 

  3. Chen L, Hao ZD, Yang TZ, Xiao H, Liu WF, Zhang DC, Bin S, Bin WD (2015) An efficient technology for smelting low grade bismuth-lead concentrate: oxygen-rich side blow process. JOM 67(9):1997–2004. https://doi.org/10.1007/s11837-015-1491-8

    Article  CAS  Google Scholar 

  4. Meijer K, Zeilstra C, Teerhuis C, Ouwehand M, Stel J (2013) Developments in alternative ironmaking. Trans Indian Inst Met 66:475–481. https://doi.org/10.1007/s12666-013-0309-z

    Article  CAS  Google Scholar 

  5. Yi SH, Choi ME, Kim DH, Ko CK, Park WI, Kim SY (2019) FINEX® as an environmentally sustainable ironmaking process. Ironmak Steelmak 46:625–631. https://doi.org/10.1080/03019233.2019.1641682

    Article  CAS  Google Scholar 

  6. Grechko AV (2000) Prospects for the use of bubbling processes in pyrometallurgy. Metallurgist 44:151–154. https://doi.org/10.1007/BF02466165

    Article  Google Scholar 

  7. Hirata T, Ishikawa M, Anezaki S (1992) Stirring effect in bath-smelting furnace with combined blowing of top and side blown oxygen and bottom blown nitrogen. ISIJ Int 32(2):182–189. https://doi.org/10.2355/isijinternational.32.182

    Article  Google Scholar 

  8. Jiang X, Cui ZX, Chen M, Zhao BJ (2019) Mixing behaviors in the horizontal bath smelting furnaces. Metall Mater Trans B 50:173–180. https://doi.org/10.1007/s11663-018-1433-2

    Article  CAS  Google Scholar 

  9. Liu YT, Yang TZ, Chen Z, Zhu ZY, Zhang L, Huang Q (2020) Experiment and numerical simulation of two-phase flow in oxygen enriched side-blown furnace. Trans Nonferrous Met Soc China 30:249–258. https://doi.org/10.1016/S1003-6326(19)65196-4

    Article  CAS  Google Scholar 

  10. Conejo AN, Mishra R, Mazumdar D (2019) Effects of nozzle radial position, separation angle, and gas flow partitioning on the mixing, eye area, and wall shear stress in ladles fitted with dual plugs. Metall Mater Trans B 50:1490–1502. https://doi.org/10.1007/s11663-019-01546-8

    Article  CAS  Google Scholar 

  11. Wang H, Brito-Parada PR (2021) Shape deformation and oscillation of particle-laden bubbles after pinch-off from a nozzle. Chem Eng J 412:127499. https://doi.org/10.1016/j.cej.2020.127499

    Article  CAS  Google Scholar 

  12. Li LM, Li XJ, Zhu ZC, Li BK (2020) Numerical modeling of multiphase flow in gas stirred ladles: from a multiscale point of view. Powder Technol 373:14–25. https://doi.org/10.1016/j.powtec.2020.06.028

    Article  CAS  Google Scholar 

  13. Wang B, Shen SY, Ruan YW, Cheng SY, Peng WJ, Zhang JY (2020) Simulation of gas-liquid two-phase flow in metallurgical process. Acta Metall Sin 56:619–632. https://doi.org/10.11900/0412.1961.2019.00385

    Article  CAS  Google Scholar 

  14. Mantripragada VT, Sarkar S (2018) Wall stresses in dual bottom purged steel making ladles. Chem Eng Res Des 139:335–345. https://doi.org/10.1016/j.cherd.2018.09.036

    Article  CAS  Google Scholar 

  15. Mantripragada VT, Sarkar S (2020) Slag eye formation in single and dual bottom purged industrial steelmaking ladles. Can Met Q 59:159–168. https://doi.org/10.1080/00084433.2020.1715697

    Article  CAS  Google Scholar 

  16. Mantripragada VT, Sarkar S (2022) Multi-objective optimization of bottom purged steelmaking ladles. Trans Indian Inst Met 75(9):2289–2298. https://doi.org/10.1007/s12666-022-02602-9

    Article  Google Scholar 

  17. Xiao YD, Lu TT, Zhou YG, Su QQ, Mu LZ, Wei T, Zhao HL, Liu FQ (2021) Computational fluid dynamics study on enhanced circulation flow in a side-blown copper smelting furnace. JOM 73(9):2724–2732. https://doi.org/10.1007/s11837-021-04800-0

    Article  Google Scholar 

  18. Zou Q, Hu JH, Yang SL, Wang H, Deng G (2023) Investigation of the splashing characteristics of lead slag in side-blown bath melting process. Energies 16:1007. https://doi.org/10.3390/en16021007

    Article  CAS  Google Scholar 

  19. Lu TT, Mu LZ, Xiao YD, Zhao HL, Liu FQ (2022) CFD study on bottom-blown copper smelting furnace with unsymmetric gas injection. J Sustain Metall. https://doi.org/10.1007/s40831-022-00565-1

    Article  Google Scholar 

  20. Dai WX, Cheng GG, Li SJ, Huang Y, Zhang GL, Qiu YL, Zhu WF (2019) Numerical simulation of multiphase flow and mixing behavior in an industrial Single Snorkel Refining Furnace (SSRF): the effect of gas injection position and snorkel diameter. ISIJ Int 59(7):1214–1223. https://doi.org/10.2355/isijinternational.ISIJINT-2018-826

    Article  CAS  Google Scholar 

  21. Zhang YM, Yi LY, Wang LN, Chen DS, Wang WJ, Liu YH, Zhao HX, Qi T (2017) A novel process for the recovery of iron, titanium, and vanadium from vanadium-bearing titanomagnetite: sodium modification–direct reduction coupled process. Int J Miner Metall Mater 24(5):504–511. https://doi.org/10.1007/s12613-017-1431-4

    Article  CAS  Google Scholar 

  22. Chen DS, Zhao LS, LiuYH QT, Wang JC, Wang LN (2013) A novel process for recovery of iron, titanium, and vanadium from titanomagnetite concentrates: NaOH molten salt roasting and water leaching processes. J Hazard Mater 244:588–595. https://doi.org/10.1016/j.jhazmat.2012.10.052

    Article  CAS  Google Scholar 

  23. Chen LM, Zhen YL, Zhang GH, Chen DS, Wang LN, Zhao HX, Liu YH, Meng FC, Wang M, Qi T (2022) Mechanism of sodium carbonate-assisted carbothermic reduction of titanomagnetite concentrate. Metall Mater Trans B 53(4):2272–2292. https://doi.org/10.1007/s11663-022-02528-z

    Article  CAS  Google Scholar 

  24. Son G, Hur N (2002) A coupled level set and volume-of-fluid method for the buoyancy-driven motion of fluid particles. Numer Heat Transf B 42:523–542. https://doi.org/10.1080/10407790260444804

    Article  Google Scholar 

  25. Brackbill JU, Kothe DB, Zemach C (1992) A continuum method for modeling surface-tension. J Comput Phys 100:335–354. https://doi.org/10.1016/0021-9991(92)90240-Y

    Article  CAS  Google Scholar 

  26. Shih TH, Zhu J, Lumley JL (1995) A new Reynolds stress algebraic equation model. Comput Methods Appl Mech Eng 125:287–302. https://doi.org/10.1016/0045-7825(95)00796-4

    Article  Google Scholar 

  27. Ansys, Inc. (2018) ANSYS Fluent theory guide 19.0

  28. Chen LM, Zhen YL, Zhang GH, Wang LN, Chen DS, Zhao HX, Liu YH, Meng FC, Peng YH, Qi T (2023) Role of Na2O and TiO2 on viscosity and structure of Sodium-Titanium-bearing slag. J Non-Cryst Solids 602:122080. https://doi.org/10.1016/j.jnoncrysol.2022.122080

    Article  CAS  Google Scholar 

  29. Liu CJ, Zhang R, Meng YF, Wang Z, Jiao SY, Jia JX, Min Y (2021) Mirco-level insight into the surface tension-structure relationship of molten CaO–MgO–SiO2–FexO–P2O5 Slags. ISIJ Int 61(11):2765–2772. https://doi.org/10.2355/isijinternational.ISIJINT-2021-236

    Article  CAS  Google Scholar 

  30. Obiso D, Kriebitzsch S, Reuter M, Meyer B (2019) The importance of viscous and interfacial forces in the hydrodynamics of the top-submerged-lance furnace. Metall Mater Trans B 50:2403–2420. https://doi.org/10.1007/s11663-019-01630-z

    Article  CAS  Google Scholar 

  31. Zhang JF (2007) On the efficiency of experimental design and its some related problems. J Appl Stat Manage 26(5):792–801. https://doi.org/10.3969/j.issn.1007-6735.2001.04.009

    Article  Google Scholar 

  32. Zhang LQ, Luo P (2012) Practical optimization method. China Science Publishing & Media Ltd., Beijing

    Google Scholar 

  33. Zhang ZY, Yan HJ, Liu FK, Wang JM (2013) Optimization analysis of lance structure parameters in oxygen enriched bottom-blown furnace. Chin J Nonferrous Met 23:1471–1478. https://doi.org/10.19476/j.ysxb.1004.0609.2013.05.041

    Article  Google Scholar 

Download references

Acknowledgements

This work is financially supported by Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDC04010100), Special Project for Transformation of Major Technological Achievements in Hebei Province (No. 19044012Z), National Key R&D Program of China (No. 2018YFC1900500), National Natural Science Foundation of China (No. 21908231), Province Key R&D Program of Hebei (No. 20374105D), and President Fund of China Institute of Standardization (No. 542022Y-9371).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Desheng Chen or Hongxin Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

The contributing editor for this article was Yongxiang Yang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bian, Z., Chen, D., Sun, L. et al. Numerical Simulation and Optimization Analysis of Primary Air Injection Mode in Oxygen-Rich Side-Blown Bath Smelting Furnace. J. Sustain. Metall. 9, 871–883 (2023). https://doi.org/10.1007/s40831-023-00699-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40831-023-00699-w

Keywords

Navigation