Skip to main content

Advertisement

Log in

Electro-deoxidation Process for Producing FeTi from Low-Grade Ilmenite: Tailoring Precursor Composition for Hydrogen Storage

  • Research Article
  • Published:
Journal of Sustainable Metallurgy Aims and scope Submit manuscript

Abstract

Electro-deoxidation of ilmenite (FeTiO3) is an economical production method of FeTi, particularly, if the end use is hydrogen storage. In this study, we show that electro-deoxidation of impure FeTiO3 with Ti content lower than Fe, as in the case of low-grade FeTiO3 ore, results in the formation of a two-phase material consisting of FeTi and Fe2Ti. The presence of Fe2Ti is detrimental to the hydrogen storage efficacy. We show for the first time that it is possible to avoid the formation of Fe2Ti or β-Ti as a second phase under similar operating conditions only by tailoring the composition of the cathode precursor, i.e., the addition of TiO2 to low-grade FeTiO3 so that the atomic ratio of Fe:Ti in the precursor is ~ 1:1. Low-grade FeTiO3 with 10 wt% TiO2 resulted in single-phase FeTi with the atomic ratio of Fe:Ti ~ 1:1 in the precursor and in the final reduced alloy. The hydrogen storage capacity of the single-phase FeTi is nearly 36% higher as compared to the two-phase alloy consisting of FeTi–Fe2Ti.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. IEA (2019) Global Energy and CO2 status report—renewables, pp 1–8

  2. Schiebahn S, Grube T, Robinius M et al (2015) Power to gas: technological overview, systems analysis and economic assessment for a case study in Germany. Int J Hydrogen Energy 40:4285–4294. https://doi.org/10.1016/j.ijhydene.2015.01.123

    Article  CAS  Google Scholar 

  3. Zhu Y, Ouyang L, Zhong H et al (2020) Closing the loop for hydrogen storage: facile regeneration of NaBH4 from its hydrolytic product. Angew Chem Int Ed 59:8623–8629. https://doi.org/10.1002/anie.201915988

    Article  CAS  Google Scholar 

  4. Yao L, Lyu X, Zhang J et al (2020) Remarkable synergistic effects of Mg2NiH4 and transition metal carbides (TiC, ZrC, WC) on enhancing the hydrogen storage properties of MgH2. Int J Hydrogen Energy 45:6765–6779. https://doi.org/10.1016/j.ijhydene.2019.12.139

    Article  CAS  Google Scholar 

  5. Singh S, Bhatnagar A, Shukla V et al (2020) Ternary transition metal alloy FeCoNi nanoparticles on graphene as new catalyst for hydrogen sorption in MgH2. Int J Hydrogen Energy 45:774–786. https://doi.org/10.1016/j.ijhydene.2019.10.204

    Article  CAS  Google Scholar 

  6. Zadorozhnyy V, Sarac B, Berdonosova E et al (2020) Evaluation of hydrogen storage performance of ZrTiVNiCrFe in electrochemical and gas-solid reactions. Int J Hydrogen Energy 45:5347–5355. https://doi.org/10.1016/j.ijhydene.2019.06.157

    Article  CAS  Google Scholar 

  7. Wallace WE, Karllcek RF, Imamura H (1979) Mechanism of hydrogen absorption by LaNi5. J Phys Chem 83:1708–1712

    Article  CAS  Google Scholar 

  8. Reilly JJ, Wiswall RH (1974) Formation and properties of iron titanium hydride. Inorg Chem 13:218–222

    Article  CAS  Google Scholar 

  9. Jain IP, Lal C, Jain A (2010) Hydrogen storage in Mg: a most promising material. Int J Hydrogen Energy 35:5133–5144. https://doi.org/10.1016/j.ijhydene.2009.08.088

    Article  CAS  Google Scholar 

  10. Zhang W, Zhu Z, Cheng CY (2011) A literature review of titanium metallurgical processes. Hydrometallurgy 108:177–188. https://doi.org/10.1016/j.hydromet.2011.04.005

    Article  CAS  Google Scholar 

  11. Chen G, Fray D, Farthing T (2000) Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride. Nature 407:361–364. https://doi.org/10.1038/35030069

    Article  CAS  Google Scholar 

  12. Suzuki RO, Koh T, Ono K (2003) Calciothermic reduction of titanium oxide and in-situ electrolysis in molten CaCl2. Metall Mater Trans B 34B:287–295

    Article  CAS  Google Scholar 

  13. Pal UB, Powell AC (2007) The use of solid-oxide-membrane technology for electrometallurgy. JOM 59:44–49

    Article  CAS  Google Scholar 

  14. Ma M, Wang D, Hu X et al (2006) A direct electrochemical route from ilmenite to hydrogen-storage ferrotitanium alloys. Chemistry 12:5075–5081. https://doi.org/10.1002/chem.200500697

    Article  CAS  Google Scholar 

  15. Panigrahi M, Shibata E, Iizuka A, Nakamura T (2013) Production of Fe-Ti alloy from mixed ilmenite and titanium dioxide by direct electrochemical reduction in molten calcium chloride. Electrochim Acta 93:143–151. https://doi.org/10.1016/j.electacta.2013.01.089

    Article  CAS  Google Scholar 

  16. Xiong L, Hua Y, Xu C et al (2016) Effect of CaO addition on preparation of ferrotitanium from ilmenite by electrochemical reduction in CaCl2-NaCl molten salt. J Alloys Compd 676:383–389. https://doi.org/10.1016/j.jallcom.2016.03.195

    Article  CAS  Google Scholar 

  17. Tan S, Örs T, Aydınol MK, Öztürk T (2009) Synthesis of FeTi from mixed oxide precursors. J Alloys Compds 475:368–372. https://doi.org/10.1016/j.jallcom.2008.07.018

    Article  CAS  Google Scholar 

  18. Panigrahi M, Iizuka A, Shibata E, Nakamura T (2013) Electrolytic reduction of mixed ( Fe, Ti ) oxide using molten calcium chloride electrolyte. J Alloys Compds 550:545–552. https://doi.org/10.1016/j.jallcom.2012.09.029

    Article  CAS  Google Scholar 

  19. Ye XS, Lu XG, Li CH et al (2010) Preparation of Ti-Fe based hydrogen storage alloy by SOM method. Int J Hydrogen Energy 36:4573–4579. https://doi.org/10.1016/j.ijhydene.2010.04.098

    Article  CAS  Google Scholar 

  20. Zou XL, Lu XG, Xiao W, Lu CY (2014) Reaction routes for the electro-deoxidation of ilmenite in molten salt. Adv Mater Res 937:58–63

    Article  Google Scholar 

  21. Zhou Z, Zhang Y, Hua Y et al (2018) Preparation of ferrotitanium alloys by electrolysis-assisted calciothermic reduction of ilmenite in equimolar CaCl2-NaCl electrolyte: effect of calcium oxide. JOM 70:575–580. https://doi.org/10.1007/s11837-018-2743-1

    Article  CAS  Google Scholar 

  22. Rizo-Acosta P, Cuevas F, Latroche M (2018) Optimization of TiH2 content for fast and efficient hydrogen cycling of MgH2-TiH2 nanocomposites. Int J Hydrogen Energy 43:16774–16781. https://doi.org/10.1016/j.ijhydene.2018.04.169

    Article  CAS  Google Scholar 

  23. Padhee SP, Roy A, Pati S (2021) Mechanistic insights into efficient reversible hydrogen storage in ferrotitanium. Int J Hydrogen Energy 46:906–921. https://doi.org/10.1016/j.ijhydene.2020.09.221

    Article  CAS  Google Scholar 

  24. Lutterotti L, Vasin R, Wenk HR (2014) Rietveld texture analysis from synchrotron diffraction images. I Calibration and basic analysis. Powder Differ 29:76–84. https://doi.org/10.1017/S0885715613001346

    Article  CAS  Google Scholar 

  25. Lutterotti L, Pillière H, Fontugne C et al (2019) Full-profile search–match by the Rietveld method. J Appl Crystallogr 52:587–598. https://doi.org/10.1107/S160057671900342X

    Article  CAS  Google Scholar 

  26. Lutterotti L, Matthies S, Wenk H (1999) MAUD: a friendly Java program for material analysis using diffraction

  27. Hosni B, Fenineche N, Elkedim O et al (2018) Structural and electrochemical properties of TiFe alloys synthesized by ball milling for hydrogen storage. J Solid State Electrohem 22(1):17–29. https://doi.org/10.1007/s10008-017-3718-9

    Article  CAS  Google Scholar 

  28. Xiao W, Lu XG, Zou XL et al (2013) Phase transitions, micro-morphology and its oxidation mechanism in oxidation of ilmenite (FeTiO3) powder. Trans Nonferr Met Soc China 23:2439–2445. https://doi.org/10.1016/S1003-6326(13)62752-1

    Article  CAS  Google Scholar 

  29. Qi C, Hua Y, Chen K et al (2016) Preparation of ferrotitanium alloy from ilmenite by electrochemical reduction in chloride molten salts. JOM 68:668–674. https://doi.org/10.1007/s11837-015-1710-3

    Article  CAS  Google Scholar 

  30. Yong ZHU, Meng MA, Dihua W et al (2006) Electrolytic reduction of mixed solid oxides in molten salts for energy efficient production of the TiNi alloy. Chin Sci Bull 51:2535–2540. https://doi.org/10.1007/s11434-006-2105-1

    Article  CAS  Google Scholar 

  31. Zhou Z, Hua Y, Xu C et al (2016) Preparation of ferrotitanium from ilmenite by electrolysis-assisted calciothermic reduction in CaCl2-NaCl molten salt. JOM 68:532–539. https://doi.org/10.1007/s11837-015-1723-y

    Article  CAS  Google Scholar 

  32. Zadorozhnyy V, Klyamkin S, Zadorozhnyy M et al (2012) Hydrogen storage nanocrystalline TiFe intermetallic compound: synthesis by mechanical alloying and compacting. Int J Hydrogen Energy 37:17131–17136. https://doi.org/10.1016/j.ijhydene.2012.08.078

    Article  CAS  Google Scholar 

  33. Kim C, Lee J (1985) The effect of surface conditions on the activation of FeTi. J Less Common Met 105:247–253

    Article  CAS  Google Scholar 

  34. Schober T (1983) On the activation of FeTi for hydrogen storage. J Less-Common Met 89:63–70. https://doi.org/10.1016/0022-5088(83)90249-7

    Article  CAS  Google Scholar 

  35. Sarac B, Zadorozhnyy V, Berdonosova E et al (2020) Hydrogen storage performance of the multi-principal-component CoFeMnTiVZr alloy in electrochemical and gas-solid reactions. RSC Adv 10:24613–24623. https://doi.org/10.1039/d0ra04089d

    Article  CAS  Google Scholar 

  36. Subbaraman R, Tripkovic D, Chang KC et al (2012) Trends in activity for the water electrolyser reactions on 3d M(Ni Co, Fe, Mn) hydr(oxy)oxide catalysts. Nat Mater 11:550–557. https://doi.org/10.1038/nmat3313

    Article  CAS  Google Scholar 

  37. Abrashev B, Spassov T, Pandev M et al (2017) Hydrogen sorption and electrochemical properties of Ti-Fe based alloys synthesized by mechanical alloying. Bulg Chem Commun 49:247–253

    Google Scholar 

  38. Bernardini M, Comisso N, Davolio G, Mengoli G (2000) Electrolytic hydriding of TiFe 50/50 alloy. J Electroanal Chem 487:1–15. https://doi.org/10.1016/S0022-0728(00)00144-3

    Article  CAS  Google Scholar 

  39. Haraki T, Oishi K, Uchida H et al (2008) Properties of hydrogen absorption by nano-structured FeTi alloys. Int J Mater Res 99:507–512. https://doi.org/10.3139/146.101669

    Article  CAS  Google Scholar 

  40. Morris S, Dodd SB, Hall PJ, Mackinnon AJ (1999) The effect of novel processing on hydrogen uptake in FeTi- and magnesium-based alloys. J Alloys Compd 293–295:458–462

    Article  Google Scholar 

  41. Vega LER, Leiva DR, Leal Neto RM et al (2019) Improved ball milling method for the synthesis of nanocrystalline TiFe compound ready to absorb hydrogen. Int J Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2019.11.035

    Article  Google Scholar 

  42. Emami H, Edalati K, Matsuda J et al (2015) Hydrogen storage performance of TiFe after processing by ball milling. Acta Mater 88:190–195. https://doi.org/10.1016/j.actamat.2014.12.052

    Article  CAS  Google Scholar 

  43. Vega LER, Leiva DR, Neto RML et al (2017) Mechanical activation of TiFe for hydrogen storage by cold rolling under inert atmosphere. Int J Hydrogen Energy 43:2913–2918. https://doi.org/10.1016/j.ijhydene.2017.12.054

    Article  CAS  Google Scholar 

  44. Comisso N, Davolio G, Soragni E, Mengoli G (2001) The cycle life of 50 / 50 TiFe alloy electrodes for charge storage. J Electroanal Chem 512:92–100

    Article  CAS  Google Scholar 

  45. Dematteis EM, Berti N, Cuevas F et al (2021) Substitutional effects in TiFe for hydrogen storage: a comprehensive review. Mater Adv. https://doi.org/10.1039/d1ma00101a

    Article  Google Scholar 

  46. Bowman RC, Tadlock WE (1979) Hydrogen diffusion in β-phase titanium iron hydride. Solid State Commun 32:313–318. https://doi.org/10.1016/0038-1098(79)90954-2

    Article  CAS  Google Scholar 

  47. Bowman RC, Attalla A, Tadlock WE (1977) NMR studies of structure and diffusion in metal hydrides. Int J Hydrogen Energy 1:421–426. https://doi.org/10.1016/0360-3199(77)90095-7

    Article  CAS  Google Scholar 

Download references

Acknowledgements

SPP and UKC are thankful to the Indian Institute of Technology (IIT) Bhubaneswar and Ministry of Human Resource Development (MHRD), Government of India (GOI) for providing financial support. SP is thankful to the Department of Science and Technology (DST), Govt. of India for funding under the Multi-Institutional Centers on Materials for Energy Conservation and storage Platform (MECSP)-2017 program and Indian Rare Earth Limited, India (IREL) for supplying raw materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soobhankar Pati.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

The contributing editor for this article was Adam Clayton Powell.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 178 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Padhee, S.P., Chanda, U.K., Singh, R. et al. Electro-deoxidation Process for Producing FeTi from Low-Grade Ilmenite: Tailoring Precursor Composition for Hydrogen Storage. J. Sustain. Metall. 7, 1178–1189 (2021). https://doi.org/10.1007/s40831-021-00412-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40831-021-00412-9

Keywords

Navigation