Skip to main content
Log in

Kinetic Investigation on Leaching of Copper from a Low-Grade Copper Oxide Deposit in Sulfuric Acid Solution: A Case Study of the Crushing Circuit Reject of a Copper Heap Leaching Plant

  • Research Article
  • Published:
Journal of Sustainable Metallurgy Aims and scope Submit manuscript

Abstract

In this study, the reject fraction of the jaw crusher, located in the first part of the crushing circuit, is used as a considerable stock in copper tank-leaching plant. High market value of copper and ease of practice were the motivating forces on studying the leaching kinetics under controlled conditions. In this regard, first, the influencing parameters such as the acid concentration, solid-to-liquid ratio, agitation speed, particle size, and temperature were assessed on the leaching fraction of copper. The findings showed that the leaching rate is nearly independent of the agitation rate at the high values of 300 rpm. The recovery of copper strongly promoted from 2 to 90% by increasing sulfuric acid concentration from 0.3 to 1.8 M. The increase in the solid-to-liquid ratio and temperature were found to be beneficial as well. Additionally, it was found that above 71% copper could be leached from the reject samples in the size range of 0–2 mm by 0.9 M sulfuric acid after 30 min contact time at 25 °C temperature. In the second stage, the leaching kinetics was studied by shrinking core models to gain a better description of the dissolution process of copper from crushing circuit reject. The results indicated that the dissolution rate could be controlled by both chemical reaction and diffusion process. However, diffusion process was the dominant mechanism in the system investigated. Ultimately, a mixed kinetic model with an activation energy of 11.72 kJ/mol was proposed as the leaching rate-controlling step.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Künkül A, Kocakerim MM, Yapici S, Demirbaǧ A (1994) Leaching kinetics of malachite in ammonia solutions. Int J Miner Process 41(3–4):167–182. https://doi.org/10.1016/0301-7516(94)90026-4

    Article  Google Scholar 

  2. Davenport WG, King M, Schlesinger M, Biswas AK (2002) Extractive metallurgy of copper. Pergamon, New York

    Google Scholar 

  3. Nozari I, Azizi A (2020) Experimental and kinetic modeling investigation of copper dissolution process from an Iranian mixed oxide/sulfide copper ore. J Sustain Metall 6:437–450. https://doi.org/10.1007/s40831-020-00291-6

    Article  Google Scholar 

  4. Nozhati RA, Azizi A (2020) Leaching of copper and zinc from the tailings sample obtained from a porcelain stone mine: feasibility, modeling, and optimization. Environ Sci Pollut Res 27(6):6239–6252. https://doi.org/10.1007/s11356-019-07199-z

    Article  CAS  Google Scholar 

  5. Ahmed IM, Nayl AA, Daoud JA (2016) Leaching and recovery of zinc and copper from brass slag by sulfuric acid. J Saudi Chem Soc 20:S280–S285. https://doi.org/10.1016/j.jscs.2012.11.003

    Article  CAS  Google Scholar 

  6. Han B, Altansukh B, Haga K, Stevanović Z, Jonović R, Avramović L, Urosević D, Takasaki Y, Masuda N, Ishiyama D, Shibayama A (2018) Development of copper recovery process from flotation tailings by a combined method of high-pressure leaching-solvent extraction. J Hazard Mater 352:192–203. https://doi.org/10.1016/j.jhazmat.2018.03.014

    Article  CAS  Google Scholar 

  7. Li B, Wang X, Wei Y, Wang H, Barati M (2018) Extraction of copper from copper and cadmium residues of zinc hydrometallurgy by oxidation acid leaching and cyclone electrowinning. Miner Eng 128:247–253. https://doi.org/10.1016/j.mineng.2018.09.007

    Article  CAS  Google Scholar 

  8. Khalid MK, Hamuyuni J, Agarwal V, Pihlasalo J, Haapalainen M, Lundström M (2019) Sulfuric acid leaching for capturing value from copper rich converter slag. J Clean Prod 215:1005–1013. https://doi.org/10.1016/j.jclepro.2019.01.083

    Article  CAS  Google Scholar 

  9. Li H, Oraby E, Eksteen J (2020) Extraction of copper and the co-leaching behaviour of other metals from waste printed circuit boards using alkaline glycine solutions. Resour Conserv Recy 154:104624. https://doi.org/10.1016/j.resconrec.2019.104624

    Article  Google Scholar 

  10. Petrović SJ, Bogdanović GD, Antonijević MM (2018) Leaching of chalcopyrite with hydrogen peroxide in hydrochloric acid solution. Trans Nonferrous Met Soc China 28:1444–1455. https://doi.org/10.1016/S1003-6326(18)64788-0

    Article  Google Scholar 

  11. Roy S, Datta A, Rehani S (2015) Flotation of copper sulphide from copper smelter slag using multiple collectors and their mixtures. Int J Miner Process 143:43–49. https://doi.org/10.1016/j.minpro.2015.08.008

    Article  CAS  Google Scholar 

  12. Lin QQ, Gu GH, Wang H, Liu YC, Wang CQ, Fu JG, Zhao JY, Huang LL (2017) Recovery of molybdenum and copper from porphyry ore via iso-flotability flotation. Trans Nonferrous Met Soc China 27(10):2260–2271. https://doi.org/10.1016/S1003-6326(17)60252-8

    Article  CAS  Google Scholar 

  13. Yin Zh, Sun W, Hu Y, Zhang Ch, Guan Q, Wu K (2018) Evaluation of the possibility of copper recovery from tailings by flotation through bench-scale, commissioning, and industrial tests. J Clean Prod 171:1039–1048. https://doi.org/10.1016/j.jclepro.2017.10.020

    Article  CAS  Google Scholar 

  14. Trujillo JY, Cisternas LA, Gálvez ED, Mellado ME (2014) Optimal design and planning of heap leaching process. Application to copper oxide leaching. Chem Eng Res Des 92(2):308–317. https://doi.org/10.1016/j.cherd.2013.07.027

    Article  CAS  Google Scholar 

  15. Liu M, Wen J, Tan G, Liu G, Wu B (2016) Experimental studies and pilot plant tests for acid leaching of low-grade copper oxide ores at the Tuwu copper mine. Hydrometallurgy 165:227–232. https://doi.org/10.1016/j.hydromet.2016.04.009

    Article  CAS  Google Scholar 

  16. Tanda BC, Eksteen JJ, Oraby EA (2017) An investigation into the leaching behavior of copper oxide minerals in aqueous alkaline glycine solutions. Hydrometallurgy 167:153–162. https://doi.org/10.1016/j.hydromet.2016.11.011

    Article  CAS  Google Scholar 

  17. Fu W, Chen Q, Hu H, Niu C, Zhu Q (2011) Solvent extraction of copper from ammoniacal chloride solutions by sterically hindered b-diketone extractants. Sep Purif Technol 80(1):52–58. https://doi.org/10.1016/j.seppur.2011.04.005

    Article  CAS  Google Scholar 

  18. Li Y, Kawashima N, Li J, Chandra AP, Gerson AR (2013) A review of the structure, and fundamental mechanisms and kinetics of the leaching of chalcopyrite. Adv Colloid Interface Sci 197–198:1–32. https://doi.org/10.1016/j.cis.2013.03.004

    Article  CAS  Google Scholar 

  19. Chen T, Lei C, Yan B, Xiao X (2014) Metal recovery from the copper sulfide tailing with leaching and fractional precipitation technology. Hydrometallurgy 147–148:178–182. https://doi.org/10.1016/j.hydromet.2014.05.018

    Article  CAS  Google Scholar 

  20. Gargul K, Boryczko B, Bukowska A, Jarosz P, Małecki S (2019) Leaching of lead and copper from flash smelting slag by citric acid. Arch Civ Mech Eng 19(3):648–656. https://doi.org/10.1016/j.acme.2019.02.001

    Article  Google Scholar 

  21. Fu W, Ram R, Etschmann B, Brugger J, Vaughan J (2020) Selective impurity removal and Cu upgrading of copper flotation concentrate by a spontaneously oxidative H2SO4 leaching process. Hydrometallurgy 195:105411. https://doi.org/10.1016/j.hydromet.2020.105411

    Article  CAS  Google Scholar 

  22. Katal R, Azizi A, Gharabaghi M (2020) Investigating the leaching behavior of copper from chalcopyrite concentrate in H2SO4/CuCl2 media. Iran J Mater Sci Eng 17(2):66–76

    Google Scholar 

  23. Bayati B, Azizi A, Karamoozian M (2018) A comprehensive study of the leaching behavior and dissolution kinetics of copper oxide ore in sulfuric acid lixiviant. Sci Iran 25:1412–1422. https://doi.org/10.24200/SCI.2018.5226.1154

    Article  Google Scholar 

  24. Haghighi HK, Moradkhani D, Sedaghat B, Rajaie Najafabadi M, Behnamfard A (2013) Production of copper cathode from oxidized copper ores by acidic leaching and two-step precipitation followed by electrowinning. Hydrometallurgy 133:111–117. https://doi.org/10.1016/j.hydromet.2012.12.004

    Article  CAS  Google Scholar 

  25. Crundwell FK (2014) The mechanism of dissolution of minerals in acidic and alkaline solutions: Part III. Application to oxide, hydroxide and sulfide minerals. Hydrometallurgy 149:71–81. https://doi.org/10.1016/j.hydromet.2014.06.008

    Article  CAS  Google Scholar 

  26. Liu W, Tang M, Tang C, He J, Yang S, Yang J (2010) Dissolution kinetics of low grade complex copper ore in ammonia-ammonium chloride solution. Trans Nonferrous Met Soc China 20(5):910–917. https://doi.org/10.1016/S1003-6326(09)60235-1

    Article  CAS  Google Scholar 

  27. Liu ZX, Yin ZL, Hu HP, Chen QY (2012) Leaching kinetics of low-grade copper ore with high-alkality gangues in ammonia-ammonium sulphate solution. J Cent South Univ T 19:77–84. https://doi.org/10.1007/s11771-012-0975-8

    Article  CAS  Google Scholar 

  28. Seo SY, Choi WS, Kim MJ, Tran T (2013) Leaching of a Cu-Co ore from Congo using sulphuric acid-hydrogen peroxide leachants. J Min Metall Sect B Metall 49(1):1–7. https://doi.org/10.2298/JMMB120103035S

    Article  CAS  Google Scholar 

  29. Wang Y, Wen Sh, Feng Q, Xian Y, Liu D (2015) Leaching characteristics and mechanism of copper flotation tailings in sulfuric acid solution. Russ J Nonferrous Met 56(2):127–133. https://doi.org/10.3103/S1067821215020170

    Article  Google Scholar 

  30. Ekmekyapar A, Demirkıran N, Künkül A, Aktaş E (2015) Leaching of malachite ore in ammonium sulfate solutions and production of copper oxide. Braz J Chem Eng 32(1):155–165. https://doi.org/10.1590/0104-6632.20150321s00003211

    Article  Google Scholar 

  31. Mohagheghi M, Askari M (2016) Copper recovery from reverberatory furnace flue dust. Int J Miner Process 157:205–209. https://doi.org/10.1016/j.minpro.2016.11.010

    Article  CAS  Google Scholar 

  32. Lu WH, Yin ZL, Ding ZY, Liu Y (2017) Dissolution kinetics of copper from multi-metal copper alloy roasted in oxygen. J Cent South Univ 24(2):335–340. https://doi.org/10.1007/s11771-017-3435-7

    Article  CAS  Google Scholar 

  33. Hossain MS, Yahaya ANA, Yacob LS, Abdul Rahim MZ, Yusof NNM, Bachmann RT (2018) Selective recovery of copper from waste mobile phone printed circuit boards using sulphuric acid leaching. Mater Today Proc 5(10):21698–21702. https://doi.org/10.1016/j.matpr.2018.07.021

    Article  CAS  Google Scholar 

  34. Nicol MJ (2018) The kinetics of the dissolution of malachite in acid solutions. Hydrometallurgy 177:214–217. https://doi.org/10.1016/j.hydromet.2018.03.017

    Article  CAS  Google Scholar 

  35. Bai S, Fu X, Li C, Wen S (2018) Process improvement and kinetic study on copper leaching from low-grade cuprite ores. Physicochem Probl Miner Process 54(2):300–310. https://doi.org/10.5277/ppmp1818

    Article  CAS  Google Scholar 

  36. Wang G, Liu Y, Tong L, Jin Z, Chen G, Yang H (2019) Effect of temperature on leaching behavior of copper minerals with different occurrence states in complex copper oxide ores. Trans Nonferrous Met Soc China 29(10):2192–2201. https://doi.org/10.1016/S1003-6326(19)65125-3

    Article  CAS  Google Scholar 

  37. Ajiboye EA, Panda PK, Adebayo AO, Ajayi OO, Tripathy BC, Ghosh MK, Basu S (2019) Leaching kinetics of Cu, Ni and Zn from waste silica rich integrated circuits using mild nitric acid. Hydrometallurgy 188:161–168. https://doi.org/10.1016/j.hydromet.2019.06.016

    Article  CAS  Google Scholar 

  38. Tanda BC, Eksteen JJ, Oraby EA, O’Connor GM (2019) The kinetics of chalcopyrite leaching in alkaline glycine/glycinate solutions. Miner Eng 135:118–128. https://doi.org/10.1016/j.mineng.2019.02.035

    Article  CAS  Google Scholar 

  39. Raschman P, Popovič Ľ, Fedoročková A, Kyslytsyna M, Sučik G (2019) Non-porous shrinking particle model of leaching at low liquid-to solid ratio. Hydrometallurgy 190:105151. https://doi.org/10.1016/j.hydromet.2019.105151

    Article  CAS  Google Scholar 

  40. Shin D, Ahn J, Lee J (2019) Kinetic study of copper leaching from chalcopyrite concentrate in alkaline glycine solution. Hydrometallurgy 183:71–78. https://doi.org/10.1016/j.hydromet.2018.10.021

    Article  CAS  Google Scholar 

  41. Oluokun OO, Otunniyi IO (2020) Kinetic analysis of Cu and Zn dissolution from printed circuit board physical processing dust under oxidative ammonia leaching. Hydrometallurgy 193:105320. https://doi.org/10.1016/j.hydromet.2020.105320

    Article  CAS  Google Scholar 

  42. Conejeros V, Pérez K, Jeldres RI, Castillo J, Hernández P, Toro N (2020) Novel treatment for mixed copper ores: Leaching ammonia–Precipitation–Flotation (L.A.P.F.). Miner Eng 149:106242. https://doi.org/10.1016/j.mineng.2020.106242

    Article  CAS  Google Scholar 

  43. Shi G, Liao Y, Su B, Zhang Y, Wang W, Xi J (2020) Kinetics of copper extraction from copper smelting slag by pressure oxidative leaching with sulfuric acid. Sep Purif Technol 241:116699. https://doi.org/10.1016/j.seppur.2020.116699

    Article  CAS  Google Scholar 

  44. Levenspiel O (1999) Chemical reaction engineering. Wiley, New York

    Google Scholar 

  45. Gbor PK, Jia CQ (2004) Critical evaluation of coupling particle size distribution with the shrinking core model. Chen Eng Sci 59(10):1979–1987. https://doi.org/10.1016/j.ces.2004.01.047

    Article  CAS  Google Scholar 

  46. Li X, Yang Zh, Zhao J, Wang Y, Song R, He Y, Su Zh, Lei T (2015) A modified shrinking core model for the reaction between acid and hetero-granular rough mineral particles. Hydrometallurgy 153:114–120. https://doi.org/10.1016/j.hydromet.2015.03.001

    Article  CAS  Google Scholar 

  47. Ferrier RJ, Cai L, Lin Q, Gorman GJ, Neethling SJ (2016) Models for apparent reaction kinetics in heap leaching: a new semi-empirical approach and its comparison to shrinking core and other particle-scale models. Hydrometallurgy 166:22–33. https://doi.org/10.1016/j.hydromet.2016.08.007

    Article  CAS  Google Scholar 

  48. Wu Zh, Dreisinger DB, Urch H, Fassbender S (2014) Fundamental study of lead recovery from cerussite concentrate with methanesulfonic acid (MSA). Hydrometallurgy 142:23–35. https://doi.org/10.1016/j.hydromet.2013.10.018

    Article  CAS  Google Scholar 

  49. Yoshida T (2003) Leaching of zinc oxide in acidic solution. Mater Trans 44(12):2489–2493. https://doi.org/10.2320/matertrans.44.2489

    Article  CAS  Google Scholar 

  50. Souza AD, Pina PS, Lima EVO, Da Silva CA, Leão VA (2007) Kinetics of sulphuric acid leaching of a zinc silicate calcine. Hydrometallurgy 89(3–4):337–345. https://doi.org/10.1016/j.hydromet.2007.08.005

    Article  CAS  Google Scholar 

  51. Gutknecht T, Gustafsson A, Forsgren Ch, Ekberg Ch, Steenari BM (2015) Investigations into recycling zinc from used metal oxide varistors via pH selective leaching: characterization, leaching, and residue analysis. Sci World J. https://doi.org/10.1155/2015/653219

    Article  Google Scholar 

  52. Kaya M, Kursunoglu S, Hussaini S, Gül E (2020) Leaching of Turkish oxidized Pb–Zn flotation tailings by inorganic and organic acids. In: Siegmund A, Alam S, Grogan J, Kerney U, Shibata E. (eds) PbZn 2020: 9th international symposium on lead and zinc processing. The minerals, metals & materials series. Springer, Cham. https://doi.org/10.1007/978-3-030-37070-1_39

  53. Liao Y, Zhou J, Huang F, Wang Y (2015) Leaching kinetics of calcification roasting calcinate from multimetallic sulfide copper concentrate containing high content of lead and iron. Sep Purif Technol 149:190–196. https://doi.org/10.1016/j.seppur.2015.05.042

    Article  CAS  Google Scholar 

  54. Habashi F (1968) Extractive metallurgy, volume 1: general principle. Gordon & Breach, Science Publishers, New York

  55. Hursit M, Lacin O, Sarac H (2009) Dissolution kinetics of smithsonite ore as an alternative zinc source with an organic leach reagent. J Taiwan Inst Chem Eng 40(1):6–12. https://doi.org/10.1016/j.jtice.2008.07.003

    Article  CAS  Google Scholar 

  56. Oediyani S, Ariyanto U, Febriana E (2019) Effect of concentration, agitation, and temperature of Pomalaa limonitic nickel ore leaching using hydrochloric acid. IOP Conf Ser Mater Sci Eng 478:012013. https://doi.org/10.1088/1757-899X/478/1/012013

    Article  CAS  Google Scholar 

  57. Larba R, Boukerche I, Alane N, Habbache N, Djerad S, Tifout L (2013) Citric acid as an alternative lixiviant for zinc oxide dissolution. Hydrometallurgy 134–135:117–123. https://doi.org/10.1016/j.hydromet.2013.02.002

    Article  CAS  Google Scholar 

  58. Asadi T, Azizi A, Lee JC, Jahani M (2017) Leaching of zinc from a lead-zinc flotation tailing sample using ferric sulphate and sulfuric acid media. J Environ Chem Eng 5(5):4769–4775. https://doi.org/10.1016/j.jece.2017.09.005

    Article  CAS  Google Scholar 

  59. Yaras A, Arslanoglu H (2018) Leaching behaviour of low-grade copper ore in the presence of organic acid. Can Metall Q 57(3):319–327. https://doi.org/10.1080/00084433.2018.1473136

    Article  CAS  Google Scholar 

  60. Hosseinzadeh M, Hosseini MR (2019) Investigation and optimization of influencing parameters on the copper extraction from a low-grade oxide deposit by acid leaching. Metall Res Technol 116(3):35. https://doi.org/10.1051/metal/2018084

    Article  CAS  Google Scholar 

  61. Kim EY, Lee JC, Kim BS, Kim MS, Jeong J (2007) Leaching behavior of nickel from waste multi-layer ceramic capacitors. Hydrometallurgy 86(1–2):89–95. https://doi.org/10.1016/j.hydromet.2006.11.007

    Article  CAS  Google Scholar 

  62. Habbache N, Alane N, Djerad S, Tifouti L (2009) Leaching of copper oxide with different acid solutions. Chem Eng J 152:503–508. https://doi.org/10.1016/j.cej.2009.05.020

    Article  CAS  Google Scholar 

  63. Ekmekyapar A, Aktaş E, Künkül A, Demirkiran N (2012) Investigation of leaching kinetics of copper from malachite ore in ammonium nitrate solutions. Metall Mater Trans B 43:764–772. https://doi.org/10.1007/s11663-012-9670-2

    Article  CAS  Google Scholar 

  64. Seyed Ghasemi SM, Azizi A (2018) Alkaline leaching of lead and zinc by sodium hydroxide: kinetics modeling. J Mater Res Technol 7(2):118–125. https://doi.org/10.1016/j.jmrt.2017.03.005

    Article  CAS  Google Scholar 

  65. Liddell KC (2005) Shrinking core models in hydrometallurgy: What students are not being told about the pseudo-steady approximation. Hydrometallurgy 79(1–2):62–68. https://doi.org/10.1016/j.hydromet.2003.07.011

    Article  CAS  Google Scholar 

  66. Wang R, Tang M, Yang S, Zhagn W, Tang C, He J, Yang J (2008) Leaching kinetics of low grade zinc oxide ore in NH3-NH4Cl-H2O system. J Cent South Univ Technol 15:679–683. https://doi.org/10.1007/s11771-008-0126-4

    Article  CAS  Google Scholar 

  67. Dávila-Pulido GI, Salinas-Rodríguez A, Carrillo-Pedroza FR, González-Ibarra AA, Méndez-Nonell J, Garza-García M (2020) Leaching kinetics of electronic waste for the recovery of copper: Rate-controlling step and rate process in a multisize particle system. Int J Chem Kinet 53(1):1–11. https://doi.org/10.1002/kin.21450

    Article  CAS  Google Scholar 

  68. Liu K, Chen Q, Yin Zh, Hu H, Ding Zh (2012) Kinetics of leaching of a Chinese laterite containing maghemite and magnetite in sulfuric acid solutions. Hydrometallurgy 125–126:125–136. https://doi.org/10.1016/j.hydromet.2012.06.001

    Article  CAS  Google Scholar 

  69. Jung M, Mishra B (2016) Kinetic and thermodynamic study of aluminum recovery from the aluminum smelter Baghouse dust. J Sustain Metall 2:257–264. https://doi.org/10.1007/s40831-016-0056-6

    Article  Google Scholar 

Download references

Acknowledgements

The authors appreciate Zagros Mes Sazan (ZMS) Copper Company for supporting this research.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization/Investigation/Writing – original draft preparation: MH; Methodology/Investigation: AEZ, L-CP; Writing – review and editing: AA. Also, all the authors have read and approved the final version.

Corresponding author

Correspondence to Mostafa Hosseinzadeh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest. Also, they confirm that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

The contributing editor for this article was Grace Ofori-Sarpong.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseinzadeh, M., Entezari Zarandi, A., Pasquier, LC. et al. Kinetic Investigation on Leaching of Copper from a Low-Grade Copper Oxide Deposit in Sulfuric Acid Solution: A Case Study of the Crushing Circuit Reject of a Copper Heap Leaching Plant. J. Sustain. Metall. 7, 1154–1168 (2021). https://doi.org/10.1007/s40831-021-00408-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40831-021-00408-5

Keywords

Navigation