Skip to main content
Log in

Selective Recovery of Cobalt and Fabrication of Nano-Co3S4 from Pregnant Leach Solution of Spent Lithium-Ion Batteries

  • Research Article
  • Published:
Journal of Sustainable Metallurgy Aims and scope Submit manuscript

Abstract

These days, innovative ideas in converting wastes to value-added materials are a solution for the fast-growing environment hazards of lithium-ion batteries (LIBs). The present paper introduces a novel method for synthesizing Co3S4 nano-powders from the pregnant leach solution (PLS) after acidic leaching of LIBs. For the first time, the cobalt along with nickel ions was selectively extracted from the PLS by a xanthate complex at room temperature. Then, the complex was washed with ammonia solution to obtain a pure cobalt complex. Finally, the complex was converted to uniform and pure nano-spheres of Co3S4 through a comparatively mild heat treatment (250 °C for 1 h). Characterization techniques (X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS) analyses) revealed high purity of the nano-architectures. Thermal analysis (TG-DSC) also confirmed the single phase of pure Co3S4 nano-articles, while the mean particle sizes were obtained 48 nm and 40 ± 2 nm using XRD and transmission electron microscopy (TEM) analyses, respectively. Plus, the presence of high specific surface area (36.42 m2/g) using BET analysis for this nano-powder is in complete agreement with the electrochemical studies in which a relatively high insertion peaks (1.14 V) were observed for the first cycle of cyclic voltammetry and (1.00 V) for the seventh cycle (equilibrium cycle). Finally, we believe that the presented approach and its results can open up new avenues to the recycling industry of LIBs.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Granata G, Moscardini E, Pagnanelli F, Trabucco F, Toro L (2012) Product recovery from Li-ion battery wastes coming from an industrial pre-treatment plant: lab scale tests and process simulations. J Power Sources 206:393–401

    Article  CAS  Google Scholar 

  2. Pavón S, Kaiser D, Mende R, Bertau M (2021) The COOL-process—a selective approach for recycling lithium batteries. Metals 11(2):259

    Article  CAS  Google Scholar 

  3. Chagnes A, Pospiech B (2013) A brief review on hydrometallurgical technologies for recycling spent lithium-ion batteries. J Chem Technol Biotechnol 88(7):1191–1199

    Article  CAS  Google Scholar 

  4. Miao Y, Hynan P, von Jouanne A, Yokochi A (2019) Current Li-ion battery technologies in electric vehicles and opportunities for advancements. Energies 12(6):1074

    Article  CAS  Google Scholar 

  5. Scrosati B, Garche J (2010) Lithium batteries: status, prospects and future. J Power Sources 195(9):2419–2430

    Article  CAS  Google Scholar 

  6. Zeng X, Li J, Ren Y (2012) Prediction of various discarded lithium batteries in China. In: 2012 IEEE International Symposium on Sustainable Systems and Technology (ISSST), 2012. IEEE, pp 1–4

  7. Meshram P, Pandey B (2019) Perspective of availability and sustainable recycling prospects of metals in rechargeable batteries—a resource overview. Resour Policy 60:9–22

    Article  Google Scholar 

  8. Winslow KM, Laux SJ, Townsend TG (2018) A review on the growing concern and potential management strategies of waste lithium-ion batteries. Resour Conserv Recycl 129:263–277

    Article  Google Scholar 

  9. Shi H, Zhang Y, Dong P, Huang X, He J, Duan J, Wang D, Zhang Y (2020) A facile strategy for recovering spent LiFePO4 and LiMn2O4 cathode materials to produce high performance LiMnxFe1−xPO4/C cathode materials. Ceram Int 46(8, Part B):11698–11704

    Article  CAS  Google Scholar 

  10. Xu J, Thomas H, Francis RW, Lum KR, Wang J, Liang B (2008) A review of processes and technologies for the recycling of lithium-ion secondary batteries. J Power Sources 177(2):512–527

    Article  CAS  Google Scholar 

  11. Zhang W, Xu C, He W, Li G, Huang J (2018) A review on management of spent lithium ion batteries and strategy for resource recycling of all components from them. Waste Manage Res 36(2):99–112

    Article  CAS  Google Scholar 

  12. Pinegar H, Smith YR (2019) Recycling of end-of-life lithium ion batteries, Part I: commercial processes. J Sustain Metall 5:402–416. https://doi.org/10.1007/s40831-019-00235-9

    Article  Google Scholar 

  13. Pinegar H, Smith YR (2020) Recycling of end-of-life lithium-ion batteries, Part II: laboratory-scale research developments in mechanical, thermal, and leaching treatments. J Sustain Metall 6:142–160

    Article  Google Scholar 

  14. Porvali A, Ojanen S, Wilson BP, Serna-Guerrero R, Lundström M (2020) Nickel metal hydride battery waste: mechano-hydrometallurgical experimental study on recycling aspects. J Sustain Metall 6(1):78–90

    Article  Google Scholar 

  15. Yang Y, Xu S, He Y (2017) Lithium recycling and cathode material regeneration from acid leach liquor of spent lithium-ion battery via facile co-extraction and co-precipitation processes. Waste Manage 64:219–227

    Article  CAS  Google Scholar 

  16. Lv W, Wang Z, Cao H, Sun Y, Zhang Y, Sun Z (2018) A critical review and analysis on the recycling of spent lithium-ion batteries. ACS Sustain Chem Eng 6(2):1504–1521

    Article  CAS  Google Scholar 

  17. Sun L, Qiu K (2011) Vacuum pyrolysis and hydrometallurgical process for the recovery of valuable metals from spent lithium-ion batteries. J Hazard Mater 194:378–384

    Article  CAS  Google Scholar 

  18. Nan J, Han D, Zuo X (2005) Recovery of metal values from spent lithium-ion batteries with chemical deposition and solvent extraction. J Power Sources 152:278–284

    Article  CAS  Google Scholar 

  19. Nayaka G, Zhang Y, Dong P, Wang D, Zhou Z, Duan J, Li X, Lin Y, Meng Q, Pai K (2019) An environmental friendly attempt to recycle the spent Li-ion battery cathode through organic acid leaching. J Environ Chem Eng 7(1):

    Article  CAS  Google Scholar 

  20. Zhang B, Xie H, Lu B, Chen X, Xing P, Qu J, Song Q, Yin H (2019) A green electrochemical process to recover Co and Li from spent LiCoO2-based batteries in molten salts. ACS Sustain Chem Eng 7(15):13391–13399

    Article  CAS  Google Scholar 

  21. Diaz LA, Strauss ML, Adhikari B, Klaehn JR, McNally JS, Lister TE (2020) Electrochemical-assisted leaching of active materials from lithium ion batteries. Resour Conserv Recycl 161:

    Article  Google Scholar 

  22. Pegoretti V, Dixini P, Magnago L, Rocha A, Lelis M, Freitas M (2019) High-temperature (HT) LiCoO2 recycled from spent lithium ion batteries as catalyst for oxygen evolution reaction. Mater Res Bull 110:97–101

    Article  CAS  Google Scholar 

  23. Zhang P, Yokoyama T, Itabashi O, Suzuki TM, Inoue K (1998) Hydrometallurgical process for recovery of metal values from spent lithium-ion secondary batteries. Hydrometallurgy 47(2–3):259–271

    Article  CAS  Google Scholar 

  24. Zhang P, Yokoyama T, Itabashi O, Wakui Y, Suzuki TM, Inoue K (1998) Hydrometallurgical process for recovery of metal values from spent nickel-metal hydride secondary batteries. Hydrometallurgy 50(1):61–75

    Article  CAS  Google Scholar 

  25. Nan J, Han D, Yang M, Cui M, Hou X (2006) Recovery of metal values from a mixture of spent lithium-ion batteries and nickel-metal hydride batteries. Hydrometallurgy 84(1–2):75–80

    Article  CAS  Google Scholar 

  26. Swain B, Jeong J, Lee J-c, Lee G-H, Sohn J-S (2007) Hydrometallurgical process for recovery of cobalt from waste cathodic active material generated during manufacturing of lithium ion batteries. J Power Sources 167(2):536–544

    Article  CAS  Google Scholar 

  27. Mantuano DP, Dorella G, Elias RCA, Mansur MB (2006) Analysis of a hydrometallurgical route to recover base metals from spent rechargeable batteries by liquid–liquid extraction with Cyanex 272. J Power Sources 159(2):1510–1518

    Article  CAS  Google Scholar 

  28. Dorella G, Mansur MB (2007) A study of the separation of cobalt from spent Li-ion battery residues. J Power Sources 170(1):210–215

    Article  CAS  Google Scholar 

  29. Pranolo Y, Zhang W, Cheng C (2010) Recovery of metals from spent lithium-ion battery leach solutions with a mixed solvent extractant system. Hydrometallurgy 102(1–4):37–42

    Article  CAS  Google Scholar 

  30. Chen L, Tang X, Zhang Y, Li L, Zeng Z, Zhang Y (2011) Process for the recovery of cobalt oxalate from spent lithium-ion batteries. Hydrometallurgy 108(1–2):80–86

    Article  CAS  Google Scholar 

  31. Suzuki T, Nakamura T, Inoue Y, Niinae M, Shibata J (2012) A hydrometallurgical process for the separation of aluminum, cobalt, copper and lithium in acidic sulfate media. Sep Purif Technol 98:396–401

    Article  CAS  Google Scholar 

  32. Xunbing L, Ouyang J, Xijuan L (2019) Method for preparing nickel/manganese/lithium/cobalt sulfate and tricobalt tetraoxide from battery wastes. Google Patents

  33. Zhu S-g, He W-Z, Li G-M, Xu Z, X-j ZHANG, Huang J-W (2012) Recovery of Co and Li from spent lithium-ion batteries by combination method of acid leaching and chemical precipitation. Trans Nonferrous Met Soc China 22(9):2274–2281

    Article  CAS  Google Scholar 

  34. Wang Y, Gratz E, Sa Q, Zheng Z, Heelan J (2019) Method and apparatus for recycling lithium-ion batteries. Google Patents

  35. Joulié M, Laucournet R, Billy E (2014) Hydrometallurgical process for the recovery of high value metals from spent lithium nickel cobalt aluminum oxide based lithium-ion batteries. J Power Sources 247:551–555

    Article  CAS  Google Scholar 

  36. Sun L, Qiu K (2012) Organic oxalate as leachant and precipitant for the recovery of valuable metals from spent lithium-ion batteries. Waste Manage 32(8):1575–1582

    Article  CAS  Google Scholar 

  37. Chen X, Fan B, Xu L, Zhou T, Kong J (2016) An atom-economic process for the recovery of high value-added metals from spent lithium-ion batteries. J Clean Prod 112:3562–3570

    Article  CAS  Google Scholar 

  38. Huang Y, Han G, Liu J, Chai W, Wang W, Yang S, Su S (2016) A stepwise recovery of metals from hybrid cathodes of spent Li-ion batteries with leaching-flotation-precipitation process. J Power Sources 325:555–564

    Article  CAS  Google Scholar 

  39. Vieceli N, Reinhardt N, Ekberg C, Petranikova M (2021) Optimization of manganese recovery from a solution based on lithium-ion batteries by solvent extraction with D2EHPA. Metals 11(1):54

    Article  CAS  Google Scholar 

  40. Xu P, Liu C, Zhang X, Zheng X, Lv W, Rao F, Yao P, Wang J, Sun Z (2021) Synergic mechanisms on carbon and sulfur during the selective recovery of valuable metals from spent lithium-ion batteries. ACS Sustain Chem Eng 9(5):2271–2279

    Article  CAS  Google Scholar 

  41. Zhao Y, Fang L-Z, Kang Y-Q, Wang L, Zhou Y-N, Liu X-Y, Li T, Li Y-X, Liang Z, Zhang Z-X (2021) A novel three-step approach to separate cathode components for lithium-ion battery recycling. Rare Met 40(6):1431–1436

    Article  CAS  Google Scholar 

  42. Bai Y, Muralidharan N, Li J, Essehli R, Belharouak I (2020) Sustainable direct recycling of lithium-ion batteries via solvent recovery of electrode materials. Chemsuschem 13(21):5664–5670

    Article  CAS  Google Scholar 

  43. Wang J, Ng S, Wang G, Chen J, Zhao L, Chen Y, Liu H (2006) Synthesis and characterization of nanosize cobalt sulfide for rechargeable lithium batteries. J Power Sources 159(1):287–290

    Article  CAS  Google Scholar 

  44. Jiang T, Yang S, Dai P, Yu X, Bai Z, Wu M, Li G, Tu C (2018) Economic synthesis of Co3S4 ultrathin nanosheet/reduced graphene oxide composites and their application as an efficient counter electrode for dye-sensitized solar cells. Electrochim Acta 261:143–150

    Article  CAS  Google Scholar 

  45. Fei L, Williams BP, Yoo SH, Carlin JM, Joo YL (2016) A general approach to fabricate free-standing metal sulfide@ carbon nanofiber networks as lithium ion battery anodes. Chem Commun 52(7):1501–1504

    Article  CAS  Google Scholar 

  46. Rui X, Tan H, Yan Q (2014) Nanostructured metal sulfides for energy storage. Nanoscale 6(17):9889–9924

    Article  CAS  Google Scholar 

  47. Li H, Yang H, Sun Z, Shi Y, Cheng H-M, Li F (2019) A highly reversible Co3S4 microsphere cathode material for aluminum-ion batteries. Nano Energy 56:100–108

    Article  CAS  Google Scholar 

  48. Mahmood N, Zhang C, Jiang J, Liu F, Hou Y (2013) Multifunctional Co3S4/graphene composites for lithium ion batteries and oxygen reduction reaction. Chemistry 19(16):5183–5190

    Article  CAS  Google Scholar 

  49. Pu J, Shen Z, Zheng J, Wu W, Zhu C, Zhou Q, Zhang H, Pan F (2017) Multifunctional Co3S4@ sulfur nanotubes for enhanced lithium-sulfur battery performance. Nano Energy 37:7–14

    Article  CAS  Google Scholar 

  50. Liu Y, Xiao C, Lyu M, Lin Y, Cai W, Huang P, Tong W, Zou Y, Xie Y (2015) Ultrathin Co3S4 nanosheets that synergistically engineer spin states and exposed polyhedra that promote water oxidation under neutral conditions. Angew Chem Int Ed 54(38):11231–11235

    Article  CAS  Google Scholar 

  51. Tian R, Zhou Y, Duan H, Guo Y, Li H, Chen K, Xue D, Liu H (2018) MOF-derived hollow Co3S4 quasi-polyhedron/MWCNT nanocomposites as electrodes for advanced lithium ion batteries and supercapacitors. ACS Appl Energy Mater 1(2):402–410

    Article  CAS  Google Scholar 

  52. Shi J, Liu G, Weng W, Cai L, Zhang Q, Wu J, Xu X, Yao X (2020) Co3S4@Li7P3S11 hexagonal platelets as cathodes with superior interfacial contact for all-solid-state lithium batteries. ACS Appl Mater Interfaces 12(12):14079–14086

    Article  CAS  Google Scholar 

  53. Tang S, Wang X, Zhang Y, Courté M, Fan HJ, Fichou D (2019) Combining Co3S4 and Ni:Co3S4 nanowires as efficient catalysts for overall water splitting: an experimental and theoretical study. Nanoscale 11(5):2202–2210

    Article  CAS  Google Scholar 

  54. Li Y, Jiang T, Yang H, Lei D, Deng X, Hao C, Zhang F, Guo J (2020) A heterostuctured Co3S4/MnS nanotube array as a catalytic sulfur host for lithium–sulfur batteries. Electrochim Acta 330:

    Article  CAS  Google Scholar 

  55. Park YS, Lee JH, Jang MJ, Jeong J, Park SM, Choi W-S, Kim Y, Yang J, Choi SM (2020) Co3S4 nanosheets on Ni foam via electrodeposition with sulfurization as highly active electrocatalysts for anion exchange membrane electrolyzer. Int J Hydrogen Energy 45(1):36–45

    Article  CAS  Google Scholar 

  56. Zhu X, Dai J, Li L, Zhao D, Wu Z, Tang Z, Ma L-J, Chen S (2020) Hierarchical carbon microflowers supported defect-rich Co3S4 nanoparticles: an efficient electrocatalyst for overall water splitting. Carbon 160:133–144

    Article  CAS  Google Scholar 

  57. Yan Y, Li K, Chen X, Yang Y, Lee JM (2017) Heterojunction-assisted Co3S4@Co3O4 core-shell octahedrons for supercapacitors and both oxygen and carbon dioxide reduction reactions. Small 13(47):1701724

    Article  CAS  Google Scholar 

  58. Dai J, Li J, Zhang Q, Liao M, Duan T, Yao W (2019) Co3S4@C@MoS2 microstructures fabricated from MOF template as advanced lithium-ion battery anode. Mater Lett 236:483–486

    Article  CAS  Google Scholar 

  59. Zhang Z, Huang Y, Liu X, Chen C, Xu Z, Liu P (2020) Zeolitic imidazolate frameworks derived ZnS/Co3S4 composite nanoparticles doping on polyhedral carbon framework for efficient lithium/sodium storage anode materials. Carbon 157:244–254

    Article  CAS  Google Scholar 

  60. Qiu J, Zheng W, Yuan R, Yue C, Li D, Liu F, Zhu J (2020) A novel 3D nanofibrous aerogel-based MoS2@Co3S4 heterojunction photocatalyst for water remediation and hydrogen evolution under simulated solar irradiation. Appl Catal B 264:

    Article  CAS  Google Scholar 

  61. Muthurasu A, Ojha GP, Lee M, Kim HY (2020) Zeolitic imidazolate framework derived Co3S4 hybridized MoS2–Ni3S2 heterointerface for electrochemical overall water splitting reactions. Electrochim Acta 334:

    Article  CAS  Google Scholar 

  62. Gao Z, Chen C, Chang J, Chen L, Wang P, Wu D, Xu F, Jiang K (2018) Porous Co3S4@Ni3S4 heterostructure arrays electrode with vertical electrons and ions channels for efficient hybrid supercapacitor. Chem Eng J 343:572–582

    Article  CAS  Google Scholar 

  63. Grace AN, Ramachandran R, Vinoba M, Choi SY, Chu DH, Yoon Y, Nam SC, Jeong SK (2014) Facile Synthesis and Electrochemical Properties of Co3S4-Nitrogen-Doped Graphene Nanocomposites for Supercapacitor Applications. Electroanalysis 26(1):199–208

    Article  CAS  Google Scholar 

  64. Ghosh D, Das CK (2015) Hydrothermal growth of hierarchical Ni3S2 and Co3S4 on a reduced graphene oxide hydrogel@ Ni foam: a high-energy-density aqueous asymmetric supercapacitor. ACS Appl Mater Interfaces 7(2):1122–1131

    Article  CAS  Google Scholar 

  65. Liu Y, Wen S, Shi W (2018) Co3S4 nanoneedles decorated on NiCo2O4 nanosheets for high-performance asymmetric supercapacitors. Mater Lett 214:194–197

    Article  CAS  Google Scholar 

  66. Xu B, Pan L, Zhu Q (2016) Synthesis of Co3S4 nanosheets and their superior supercapacitor property. J Mater Eng Perform 25(3):1117–1121

    Article  CAS  Google Scholar 

  67. Tabrizi AG, Arsalani N, Naghshbandi Z, Ghadimi LS, Mohammadi A (2018) Growth of polyaniline on rGO-Co3S4 nanocomposite for high-performance supercapacitor energy storage. Int J Hydrog Energy 43(27):12200–12210

    Article  CAS  Google Scholar 

  68. Wang H, Li Z, Li G, Peng F, Yu H (2015) Co3S4/NCNTs: a catalyst for oxygen evolution reaction. Catal Today 245:74–78

    Article  CAS  Google Scholar 

  69. Xu Y, Lv X-J, Chen Y, Fu W-F (2017) Highly selective reduction of nitroarenes to anilines catalyzed using MOF-derived hollow Co3S4 in water under ambient conditions. Catal Commun 101:31–35

    Article  CAS  Google Scholar 

  70. Xu M, Niu H, Huang J, Song J, Mao C, Zhang S, Zhu C, Chen C (2015) Facile synthesis of graphene-like Co3S4 nanosheet/Ag2S nanocomposite with enhanced performance in visible-light photocatalysis. Appl Surf Sci 351:374–381

    Article  CAS  Google Scholar 

  71. Zhang Y-H, Wu L-M, Huang P-P, Shen Q, Sun Z-X (2018) Determination and application of the solubility product of metal xanthate in mineral flotation and heavy metal removal in wastewater treatment. Miner Eng 127:67–73

    Article  CAS  Google Scholar 

  72. Otero-Calvis A, Ramírez-Serrano B, Coello-Velazquez A (2020) Selectivity in the flotation of copper with xanthate over other ions present in wastewater: an experimental and computational study. J Mol Graph Model 98:

    Article  CAS  Google Scholar 

  73. Chen Y, Liu X, Chen J (2021) Steric hindrance effect on adsorption of xanthate on sphalerite surface: a DFT study. Miner Eng 165:

    Article  CAS  Google Scholar 

  74. Zhang Q, Wen S, Feng Q, Liu J (2021) Surface modification of azurite with lead ions and its effects on the adsorption of sulfide ions and xanthate species. Appl Surf Sci 543:

    Article  CAS  Google Scholar 

  75. Ge P, Zhang C, Hou H, Wu B, Zhou L, Li S, Wu T, Hu J, Mai L, Ji X (2018) Anions induced evolution of Co3X4 (X = O, S, Se) as sodium-ion anodes: the influences of electronic structure, morphology, electrochemical property. Nano Energy 48:617–629

    Article  CAS  Google Scholar 

  76. Zhu J, Wei Y, Zhou Y, Yang J (2018) Triethylenediamine-assisted one-step hydrothermal synthesis of polyhedron-shaped Co3S4 for high performance supercapacitor. Ceram Int 44(2):1836–1842

    Article  CAS  Google Scholar 

  77. Yang H, Yin L, Liang J, Sun Z, Wang Y, Li H, He K, Ma L, Peng Z, Qiu S (2018) An aluminum–sulfur battery with a fast kinetic response. Angew Chem 130(7):1916–1920

    Article  Google Scholar 

  78. Zhang Q, Xu C, Lu B (2014) Super-long life supercapacitors based on the construction of Ni foam/graphene/Co3S4 composite film hybrid electrodes. Electrochim Acta 132:180–185

    Article  CAS  Google Scholar 

  79. Ghanbari H, Cousins BG, Seifalian AM (2011) A nanocage for nanomedicine: polyhedral oligomeric silsesquioxane (POSS). Macromol Rapid Commun 32(14):1032–1046

    Article  CAS  Google Scholar 

  80. Duhovic S, Dincă M (2015) Synthesis and electrical properties of covalent organic frameworks with heavy chalcogens. Chem Mater 27(16):5487–5490

    Article  CAS  Google Scholar 

  81. Xu M, Guo H, Zhang T, Zhang J, Wang X, Yang W (2021) High-performance zeolitic imidazolate frameworks derived three-dimensional Co3S4/polyaniline nanocomposite for supercapacitors. J Energy Storage 35:

    Article  Google Scholar 

  82. Manjunatha C, Lakshmikant S, Shreenivasa L, Srinivasa N, Ashoka S, Shivraj B, Selvaraj M, Meda US, Babu GS, Pollet BG (2021) Development of non-stoichiometric hybrid Co3S4/Co0.85Se nanocomposites for an evaluation of synergistic effect on the OER performance. Surf Interfaces 25:

    Article  CAS  Google Scholar 

  83. Zhao Q, Wang R, Zhang Y, Huang G, Jiang B, Xu C, Pan F (2021) The design of Co3S4@MXene heterostructure as sulfur host to promote the electrochemical kinetics for reversible magnesium-sulfur batteries. J Magnes Alloys 9(1):78–89

    Article  CAS  Google Scholar 

  84. Zhu X, Dai J, Li L, Zhao D, Wu Z, Tang Z, Ma L-J, Chen S (2020) Hierarchical carbon microflowers supported defect-rich Co3S4 nanoparticles: an efficient electrocatalyst for water splitting. Carbon 160:133–144

    Article  CAS  Google Scholar 

  85. Peng C, Liu F, Wang Z, Wilson BP, Lundström M (2019) Selective extraction of lithium (Li) and preparation of battery grade lithium carbonate (Li2CO3) from spent Li-ion batteries in nitrate system. J Power Sources 415:179–188

    Article  CAS  Google Scholar 

  86. Chen X, Kang D, Cao L, Li J, Zhou T, Ma H (2019) Separation and recovery of valuable metals from spent lithium ion batteries: simultaneous recovery of Li and Co in a single step. Sep Purif Technol 210:690–697

    Article  CAS  Google Scholar 

  87. Shen Y, Nagaraj D, Farinato R, Somasundaran P (2016) Study of xanthate decomposition in aqueous solutions. Miner Eng 93:10–15

    Article  CAS  Google Scholar 

  88. Elizondo-Álvarez MA, Uribe-Salas A, Bello-Teodoro S (2021) Chemical stability of xanthates, dithiophosphinates and hydroxamic acids in aqueous solutions and their environmental implications. Ecotoxicol Environ Saf 207:

    Article  CAS  Google Scholar 

  89. Shen Y, Nagaraj D, Farinato R, Somasundaran P, Tong S (2019) Decomposition of flotation reagents in solutions containing metal ions. Part I: gaseous compounds from xanthate decomposition. Miner Eng 139:

    Article  CAS  Google Scholar 

  90. Shen Y, Nagaraj D, Farinato R, Somasundaran P, Tong S (2019) Xanthate decomposition in ore pulp under flotation conditions: method development and effects of minerals on decomposition. Miner Eng 131:198–205

    Article  CAS  Google Scholar 

  91. Mensah MB, Awudza JA, Revaprasadu N, O’Brien P (2021) Synthesis of CdS and PbS nanoparticles by the thermal decomposition of ethyl xanthate complexes in castor oil using the heat-up technique. Mater Sci Semicond Process 122:

    Article  CAS  Google Scholar 

  92. Darezereshki E, Vakylabad AB, Hassanzadeh A, Niedoba T, Surowiak A, Koohestani B (2021) Hydrometallurgical synthesis of nickel nano-sulfides from spent lithium-ion batteries. Minerals 11(4):419

    Article  Google Scholar 

  93. Wang H, Bai Y, Chen S, Luo X, Wu C, Wu F, Lu J, Amine K (2015) Binder-free V2O5 cathode for greener rechargeable aluminum battery. ACS Appl Mater Interfaces 7(1):80–84

    Article  CAS  Google Scholar 

  94. Ferreira DA, Prados LMZ, Majuste D, Mansur MB (2009) Hydrometallurgical separation of aluminium, cobalt, copper and lithium from spent Li-ion batteries. J Power Sources 187(1):238–246

    Article  CAS  Google Scholar 

  95. Wu C, Li B, Yuan C, Ni S, Li L (2019) Recycling valuable metals from spent lithium-ion batteries by ammonium sulfite-reduction ammonia leaching. Waste Manage 93:153–161

    Article  CAS  Google Scholar 

  96. Gao G, Luo X, Lou X, Guo Y, Su R, Guan J, Li Y, Yuan H, Dai J, Jiao Z (2019) Efficient sulfuric acid-vitamin C leaching system: towards enhanced extraction of cobalt from spent lithium-ion batteries. J Mater Cycles Waste Manage 21(4):942–949

    Article  CAS  Google Scholar 

  97. Sasaki Y (1982) Extraction—spectrophotometric determination of manganese (II) with xanthates. Anal Chim Acta 138:419–424

    Article  CAS  Google Scholar 

  98. Pilipenko A, Ul’ko N (1955) Analytical properties of xanthates (III). Zh Anal Khim 10:299–304

    CAS  Google Scholar 

  99. Pradhan N, Katz B, Efrima S (2003) Synthesis of high-quality metal sulfide nanoparticles from alkyl xanthate single precursors in alkylamine solvents. J Phys Chem B 107(50):13843–13854

    Article  CAS  Google Scholar 

  100. Efrima S, Pradhan N (2003) Xanthates and related compounds as versatile agents in colloid science. C R Chim 6(8–10):1035–1045

    Article  CAS  Google Scholar 

  101. Darezereshki E, Bakhtiari F, Alizadeh M, Ranjbar M (2012) Direct thermal decomposition synthesis and characterization of hematite (α-Fe2O3) nanoparticles. Mater Sci Semicond Process 15(1):91–97

    Article  CAS  Google Scholar 

  102. Fronzi M, Assadi MHN, Ford MJ (2018) Ab initio investigation of water adsorption and hydrogen evolution on Co9S8 and Co3S4 low-index surfaces. ACS Omega 3(9):12215–12228

    Article  CAS  Google Scholar 

  103. Vakylabad AB, Schaffie M, Naseri A, Ranjbar M, Manafi Z (2016) A procedure for processing of pregnant leach solution (PLS) produced from a chalcopyrite-ore bio-heap: CuO nano-powder fabrication. Hydrometallurgy 163:24–32

    Article  CAS  Google Scholar 

  104. Sahoo MK, Rao GR (2018) Fabrication of NiCo2S4 nanoball embedded nitrogen doped mesoporous carbon on nickel foam as an advanced charge storage material. Electrochim Acta 268:139–149

    Article  CAS  Google Scholar 

  105. Tang Y, Chen T, Yu S, Qiao Y, Mu S, Zhang S, Zhao Y, Hou L, Huang W, Gao F (2015) A highly electronic conductive cobalt nickel sulphide dendrite/quasi-spherical nanocomposite for a supercapacitor electrode with ultrahigh areal specific capacitance. J Power Sources 295:314–322

    Article  CAS  Google Scholar 

  106. Borthakur P, Darabdhara G, Das MR, Boukherroub R, Szunerits S (2017) Solvothermal synthesis of CoS/reduced porous graphene oxide nanocomposite for selective colorimetric detection of Hg (II) ion in aqueous medium. Sensors Actuators B 244:684–692

    Article  CAS  Google Scholar 

  107. Hotze EM, Phenrat T, Lowry GV (2010) Nanoparticle aggregation: challenges to understanding transport and reactivity in the environment. J Environ Qual 39(6):1909–1924

    Article  CAS  Google Scholar 

  108. Yasui K, Kato K (2012) Dipole–dipole interaction model for oriented attachment of BaTiO3 nanocrystals: a route to mesocrystal formation. J Phys Chem C 116(1):319–324

    Article  CAS  Google Scholar 

  109. Xing B, Vecitis CD, Senesi N (2016) Engineered nanoparticles and the environment: biophysicochemical processes and toxicity, vol 4. Wiley, Somerset

    Book  Google Scholar 

  110. Fernández-Baldo MA, Berni E, Raba J, Sanz MI, Durán N (2013) Applications of nanoparticles synthesized by yeasts: a green and eco-friendly method. In: Green biosynthesis of nanoparticles. CABI, Oxford Shire, p 216

  111. Thanh NT, Green LA (2010) Functionalisation of nanoparticles for biomedical applications. Nano Today 5(3):213–230

    Article  CAS  Google Scholar 

  112. Ezhov AA, Shandryuk GA, Bondarenko GN, Merekalov AS, Abramchuk SS, Shatalova AM, Manna P, Zubarev ER, Talroze RV (2011) Liquid-crystalline polymer composites with CdS nanorods: structure and optical properties. Langmuir 27(21):13353–13360

    Article  CAS  Google Scholar 

  113. Guozhong C (2004) Nanostructures and nanomaterials: synthesis, properties and applications. World Scientific, Singapore

    Google Scholar 

  114. Wang S, Jiao S, Wang J, Chen H-S, Tian D, Lei H, Fang D-N (2017) High-performance aluminum-ion battery with CuS@C microsphere composite cathode. ACS Nano 11(1):469–477

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research has been supported by Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology (Kemran-Iran) under grant number of 7/S/98/1621. Also, some part of this research was funded by the Iran National Science Foundation (INSF) under the grant number of 98/S/8700. Additionally, we would like to thank the anonymous reviewers for their insightful remarks, constructive comments, and fruitful criticisms.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ali Behrad Vakylabad or Esmaeel Darezereshki.

Ethics declarations

Conflict of interest

The present study has no competing financial interest.

Additional information

The contributing editor for this article was Gabrielle Gaustad.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behrad Vakylabad, A., Darezereshki, E. & Hassanzadeh, A. Selective Recovery of Cobalt and Fabrication of Nano-Co3S4 from Pregnant Leach Solution of Spent Lithium-Ion Batteries. J. Sustain. Metall. 7, 1027–1044 (2021). https://doi.org/10.1007/s40831-021-00393-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40831-021-00393-9

Keywords

Navigation