Skip to main content
Log in

Determination of Optimum Process Conditions by Central Composite Design Method and Examination of Leaching Kinetics of Smithsonite Ore Using Nitric Acid Solution

  • Research Article
  • Published:
Journal of Sustainable Metallurgy Aims and scope Submit manuscript

Abstract

The leaching behavior of Tunceli smithsonite ore in nitric acid was evaluated in two study steps including optimization of leaching process and kinetics modeling. The individual and synergistic effects of effective parameters such as nitric acid concentration, solid-to-liquid ratio, stirring speed, and temperature on the dissolution rate of zinc were investigated using central composite design. Four factors including temperature (30–50 °C), nitric acid concentration (0.2–0.5 mol/L), stirring speed (350–600 rpm), and solid-to-liquid ratio (0.004–0.01 g/L) were investigated. The dissolution percent of zinc (97%) was obtained in 120 min of leaching time: acid concentration 0.5 mol/L, temperature 50 °C, stirring speed 500 rpm, and solid–liquid ratio 2/500 g/mL at the optimum conditions obtained using the central composite design. The dissolution kinetics of smithsonite was examined according to heterogenous models and it was found that the dissolution rate was controlled by ash layer diffusion process. It was found that the leaching rate increased with increasing temperature, stirring speed, and acid concentration as well as decrescent particle size and solid/liquid ratio. The trial data were analyzed by statistical and graphical methods and the activation energy of this leaching process was determined to be 28.63 kJ·mol−1.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Moghaddam J, Sarraf-Mamoory R, Yamini Y, Abdollahy M (2005) Determination of the optimum conditions for the leaching of nonsulfide zinc ores (high-SiO2) in ammonium carbonate media. Ind Eng Chem Res 44:8952–8958. https://doi.org/10.1021/ie050479+

    Article  CAS  Google Scholar 

  2. Ejtemaei M, Gharabaghi M, Irannajad M (2014) A review of zinc oxide mineral beneficiation using flotation method. Adv Colloid Interface Sci 206:68–78. https://doi.org/10.1016/j.cis.2013.02.003

    Article  CAS  Google Scholar 

  3. Abali Y, Bayca SU, Gumus R (2017) Dissolution kinetics of smithsonite in boric acid solutions. Physicochem Probl Miner Process 53:161–172. https://doi.org/10.5277/ppmp170113

    Article  CAS  Google Scholar 

  4. Yang T, Rao S, Zhang D et al (2016) Ligand selection model for leaching of low grade zinc oxide ores. Characterization of minerals, metals, and materials 2016. Springer International Publishing, Cham, pp 327–335

    Google Scholar 

  5. Jha MM, Kumar V, Singh R (2001) Review of hydrometallurgical recovery of zinc from industrial wastes. Resour Conserv Recycl 33:1–22. https://doi.org/10.1016/S0921-3449(00)00095-1

    Article  Google Scholar 

  6. Hurşit M, Laçin O, Saraç H (2009) Dissolution kinetics of smithsonite ore as an alternative zinc source with an organic leach reagent. J Taiwan Inst Chem Eng 40:6–12. https://doi.org/10.1016/j.jtice.2008.07.003

    Article  CAS  Google Scholar 

  7. Ehsani I, Ucyildiz A, Obut A (2019) Leaching behaviour of zinc from a smithsonite ore in sodium hydroxide solutions. Physicochem Probl Miner Process 55:407–416. https://doi.org/10.5277/ppmp18150

    Article  CAS  Google Scholar 

  8. Dhawan N, Safarzadeh MS, Birinci M (2011) Kinetics of hydrochloric acid leaching of smithsonite. Russ J Non-Ferrous Met 52:209–216. https://doi.org/10.3103/S1067821211030059

    Article  Google Scholar 

  9. Laçin O, Dönmez B, Eti FE (2018) Investigation of leaching kinetics of smithsonite ore. Iran J Chem Chem Eng 37:205–212

    Google Scholar 

  10. Zhao Y, Stanforth R (2000) Production of Zn powder by alkaline treatment of smithsonite Zn–Pb ores. Hydrometallurgy 56:237–249. https://doi.org/10.1016/S0304-386X(00)00079-7

    Article  CAS  Google Scholar 

  11. Talan D, Atalay MÜ, Altun NE (2017) Extraction of zinc from smithsonite by ammonia leaching. In: Proceedings of the 3rd World Congress on mechanical, chemical, and material engineering (MCM’17), pp. 1301–1306. https://doi.org/10.11159/mmme17.130

  12. Feng Q, Wen S, Zhao W et al (2015) Dissolution regularities of smithsonite in methane sulfonic acid. Russ J Non-Ferrous Met 56:365–371. https://doi.org/10.3103/S1067821215040033

    Article  Google Scholar 

  13. Wu D-D, Wen S-M, Yang J et al (2013) Dissolution kinetics of smithsonite in sulfamic acid solution. Asian J Chem 25:10556–10560. https://doi.org/10.14233/ajchem.2013.15944

    Article  CAS  Google Scholar 

  14. Ju S, Motang T, Shenghai Y, Yingnian L (2005) Dissolution kinetics of smithsonite ore in ammonium chloride solution. Hydrometallurgy 80:67–74. https://doi.org/10.1016/j.hydromet.2005.07.003

    Article  CAS  Google Scholar 

  15. Espiari S, Rashchi F, Sadrnezhaad SK (2006) Hydrometallurgical treatment of tailings with high zinc content. Hydrometallurgy 82:54–62. https://doi.org/10.1016/j.hydromet.2006.01.005

    Article  CAS  Google Scholar 

  16. Zárate-Gutiérrez R, Lapidus GT, Morales RD (2010) Pressure leaching of a lead–zinc–silver concentrate with nitric acid at moderate temperatures between 130 and 170°C. Hydrometallurgy 104:8–13. https://doi.org/10.1016/j.hydromet.2010.04.001

    Article  CAS  Google Scholar 

  17. Zhang W, Li J, Zhao Z (2015) Leaching kinetics of scheelite with nitric acid and phosphoric acid. Int J Refract Met Hard Mater 52:78–84. https://doi.org/10.1016/j.ijrmhm.2015.05.017

    Article  CAS  Google Scholar 

  18. Santos SSG, Silva HRM, de Souza AG et al (2015) Acid-leached mixed vermiculites obtained by treatment with nitric acid. Appl Clay Sci 104:286–294. https://doi.org/10.1016/j.clay.2014.12.008

    Article  CAS  Google Scholar 

  19. Habbache N, Alane N, Djerad S, Tifouti L (2009) Leaching of copper oxide with different acid solutions. Chem Eng J 152:503–508. https://doi.org/10.1016/j.cej.2009.05.020

    Article  CAS  Google Scholar 

  20. Kirk RE, Othmer DF, Grayson M (1985) Kirk-Othmer concise encyclopedia of chemical technology, 4th edn. Wiley, New York

    Google Scholar 

  21. Madi-Azegagh K, Yahiaoui I, Boudrahem F et al (2018) Applied of central composite design for the optimization of removal yield of the ketoprofen (KTP) using electrocoagulation process. Sep Sci Technol. https://doi.org/10.1080/01496395.2018.1556298

    Article  Google Scholar 

  22. Bezerra MA, Santelli RE, Oliveira EP et al (2008) Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 76:965–977. https://doi.org/10.1016/j.talanta.2008.05.019

    Article  CAS  Google Scholar 

  23. Jain M, Garg VK, Kadirvelu K (2011) Investigation of Cr(VI) adsorption onto chemically treated Helianthus annuus: optimization using response surface methodology. Bioresour Technol 102:600–605. https://doi.org/10.1016/j.biortech.2010.08.001

    Article  CAS  Google Scholar 

  24. Mazaheri H, Ghaedi M, Asfaram A, Hajati S (2016) Performance of CuS nanoparticle loaded on activated carbon in the adsorption of methylene blue and bromophenol blue dyes in binary aqueous solutions: using ultrasound power and optimization by central composite design. J Mol Liq 219:667–676. https://doi.org/10.1016/j.molliq.2016.03.050

    Article  CAS  Google Scholar 

  25. Kataria N, Garg VK (2018) Optimization of Pb (II) and Cd (II) adsorption onto ZnO nanoflowers using central composite design: isotherms and kinetics modelling. J Mol Liq 271:228–239. https://doi.org/10.1016/j.molliq.2018.08.135

    Article  CAS  Google Scholar 

  26. Gunst RF, Myers RH, Montgomery DC (2006) Response surface methodology: process and product optimization using designed experiments. Technometrics 38:285. https://doi.org/10.2307/1270613

    Article  Google Scholar 

  27. Ekmekyapar A, Aktaş E, Künkül A, Demirkiran N (2012) Investigation of leaching kinetics of copper from malachite ore in ammonium nitrate solutions. Metall Mater Trans B 43:764–772. https://doi.org/10.1007/s11663-012-9670-2

    Article  CAS  Google Scholar 

  28. Garg UK, Kaur MP, Garg VK, Sud D (2008) Removal of nickel(II) from aqueous solution by adsorption on agricultural waste biomass using a response surface methodological approach. Bioresour Technol 99:1325–1331. https://doi.org/10.1016/j.biortech.2007.02.011

    Article  CAS  Google Scholar 

  29. Hamsaveni D, Prapulla S, Divakar S (2001) Response surface methodological approach for the synthesis of isobutyl isobutyrate. Process Biochem 36:1103–1109. https://doi.org/10.1016/S0032-9592(01)00142-X

    Article  CAS  Google Scholar 

  30. Zhang X, Li X, Cao H, Zhang Y (2010) Separation of copper, iron (III), zinc and nickel from nitrate solution by solvent extraction using LK-C2. Sep Purif Technol 70:306–313. https://doi.org/10.1016/j.seppur.2009.10.012

    Article  CAS  Google Scholar 

  31. Hoh YC, Chou NP, Wang WK (1982) Extraction of zinc by LIX 34. Ind Eng Chem Process Des Dev 21:12–15. https://doi.org/10.1021/i200016a003

    Article  CAS  Google Scholar 

  32. Adhikari CR, Narita H, Tanaka M (2012) Solvent extraction equilibrium of zinc from nitrate solutions with 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester. Ind Eng Chem Res 51:16433–16437. https://doi.org/10.1021/ie301589s

    Article  CAS  Google Scholar 

  33. Huynh HT, Tanaka M (2003) Removal of Bi, Cd Co, Cu, Fe, Ni, Pb, and Zn from an aqueous nitrate medium with Bis(2-ethylhexyl)phosphoric acid impregnated kapok fiber. Ind Eng Chem Res 42:4050–4054. https://doi.org/10.1021/ie020794l

    Article  CAS  Google Scholar 

  34. Levenspiel O (1999) Chemical reaction engineering. Ind Eng Chem Res 38:4140–4143. https://doi.org/10.1021/ie990488g

    Article  CAS  Google Scholar 

  35. Wen CY (1968) Noncatalytic heterogeneous solid-fluid reaction models. Ind Eng Chem 60:34–54. https://doi.org/10.1021/ie50705a007

    Article  CAS  Google Scholar 

  36. Habashi F (1983) Dissolution of minerals and hydrometallurgical processes. Naturwissenschaften 70:403–411. https://doi.org/10.1007/BF01047177

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Munzur University Scientific Investigations Project Unit (PPMUB018-13).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Kayra Tanaydın.

Ethics declarations

Conflict of interest

All authors have declared no conflict of interest.

Additional information

The contributing editor for this article was Atsushi Shibayama.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanaydın, M.K., Bakıcı Tanaydın, Z. & Demirkıran, N. Determination of Optimum Process Conditions by Central Composite Design Method and Examination of Leaching Kinetics of Smithsonite Ore Using Nitric Acid Solution. J. Sustain. Metall. 7, 178–191 (2021). https://doi.org/10.1007/s40831-020-00333-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40831-020-00333-z

Keywords

Navigation