Skip to main content
Log in

Experimental and Kinetic Modeling Investigation of Copper Dissolution Process from an Iranian Mixed Oxide/Sulfide Copper Ore

  • Research Article
  • Published:
Journal of Sustainable Metallurgy Aims and scope Submit manuscript

Abstract

In the present work, the leaching behavior of copper from an oxide/sulfide ore was assessed in two work phases including process optimization and kinetics modeling. In the first phase, the individual and synergistic impacts of the influential parameters such as sulfuric acid concentration, liquid/solid ratio, pulp mixing rate, temperature, and contact time were investigated on the dissolution rate of copper using response surface modeling. The findings demonstrated that the linear effects of dissolution time and temperature and the quadratic impact of acid concentration had the largest influence on the recovery and the linear impact of stirring speed had the least degree of importance. Process optimization was also performed utilizing the desirability function approach and more than 88.17% copper was recovered at the optimum conditions: ~ 17% acid concentration, ~ 11.3 mL/g liquid/solid ratio, ~ 390 rpm stirring speed, 50 °C temperature, and 60 min leaching time. In the second phase, the leaching kinetics was examined by heterogeneous shrinking core models and it was realized that diffusion through product layer was the dissolution rate controlling step with the activation energy of 28.92 kJ/mol and frequency factor of 6.155 min−1. Ultimately, a mathematical kinetics model was developed and suggested to understand the leaching process.

Graphical Abstract

a 3D response surface graphs displaying the synergistic effects between “temperature and liquid/solid ratio” and “stirring speed and leaching time” on the leaching recovery of copper; b the optimum conditions of influential factors; c plot of diffusion through product layer versus leaching time for temperature effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bai X, Wen S, Liu J, Lin Y (2018) Response surface methodology for optimization of copper leaching from refractory flotation tailings. Minerals 8:165. https://doi.org/10.3390/min8040165

    Article  Google Scholar 

  2. Shishkin A, Mironovs V, Vu H, Novak P, Baronins J, Polyakov A, Ozolins J (2018) Cavitation-dispersion method for copper cementation from wastewater by iron powder. Metals 8:920. https://doi.org/10.3390/met8110920

    Article  CAS  Google Scholar 

  3. Bayati B, Azizi A, Karamoozian M (2018) A comprehensive study of the leaching behavior and dissolution kinetics of copper oxide ore in sulfuric acid lixiviant. Sci Iran 25:1412–1422. https://doi.org/10.24200/SCI.2018.5226.1154

    Article  Google Scholar 

  4. Antonijević MM, Dimitrijević MD, Stevanović ZO, Serbula SM, Bogdanovic GD (2008) Investigation of the possibility of copper recovery from the flotation tailings by acid leaching. J Hazard Mater 158:23–34. https://doi.org/10.1016/j.jhazmat.2008.01.063

    Article  CAS  Google Scholar 

  5. Liu ZX, Yin ZL, Hu HP, Chen QY (2012) Leaching kinetics of low-grade copper ore with high-alkality gangues in ammonia-ammonium sulphate solution. J Cent South Univ 19:77–84. https://doi.org/10.1007/s11771-012-0975-8

    Article  CAS  Google Scholar 

  6. Chen T, Lei C, Yan B, Xiao X (2014) Metal recovery from the copper sulfide tailing with leaching and fractional precipitation technology. Hydrometallurgy 147–148:178–182. https://doi.org/10.1016/j.hydromet.2014.05.018

    Article  CAS  Google Scholar 

  7. Ahmed IM, Nayl AA, Daoud JA (2016) Leaching and recovery of zinc and copper from brass slag by sulfuric acid. J Saudi Chem Soc 20:S280–S285. https://doi.org/10.1016/j.jscs.2012.11.003

    Article  CAS  Google Scholar 

  8. Han B, Altansukh B, Haga K, Stevanović Z, Jonović R, Avramović L, Urosević D, Takasaki Y, Masuda N, Ishiyama D, Shibayama A (2018) Development of copper recovery process from flotation tailings by a combined method of high-pressure leaching-solvent extraction. J Hazard Mater 352:192–203. https://doi.org/10.1016/j.jhazmat.2018.03.014

    Article  CAS  Google Scholar 

  9. Khalid MK, Hamuyuni J, Agarwal V, Pihlasalo J, Haapalainen M, Lundström M (2019) Sulfuric acid leaching for capturing value from copper rich converter slag. J Clean Prod 215:1005–1013. https://doi.org/10.1016/j.jclepro.2019.01.083

    Article  CAS  Google Scholar 

  10. Gargul K, Boryczko B, Bukowska A, Jarosz P, Małecki S (2019) Leaching of lead and copper from flash smelting slag by citric acid. Arch Civ Mech Eng 19:648–656. https://doi.org/10.1016/j.acme.2019.02.001

    Article  Google Scholar 

  11. Nozhati RA, Azizi A (2020) Leaching of copper and zinc from the tailings sample obtained from a porcelain stone mine: feasibility, modeling, and optimization. Environ Sci Pollut Res 27:6239–6252. https://doi.org/10.1007/s11356-019-07199-z

    Article  CAS  Google Scholar 

  12. Haghighi HK, Moradkhani D, Sedaghat B, Rajaie Najafabadi M, Behnamfard A (2013) Production of copper cathode from oxidized copper ores by acidic leaching and two-step precipitation followed by electrowinning. Hydrometallurgy 133:111–117. https://doi.org/10.1016/j.hydromet.2012.12.004

    Article  CAS  Google Scholar 

  13. Crundwell FK (2014) The mechanism of dissolution of minerals in acidic and alkaline solutions: Part III. Application to oxide, hydroxide and sulfide minerals. Hydrometallurgy 149:71–81. https://doi.org/10.1016/j.hydromet.2014.06.008

    Article  CAS  Google Scholar 

  14. Ata ON, Colak S, Ekinci Z, Copur M (2001) Determination of the optimum conditions for leaching of malachite ore in H2SO4 solutions. Chem Eng Technol 24:409–413. https://doi.org/10.1002/1521-4125(200104)24:4<409:AID-CEAT409>3.0.CO;2-0

    Article  CAS  Google Scholar 

  15. Bingol D, Canbazoğlu M (2004) Dissolution kinetics of malachite in sulphuric acid. Hydrometallurgy 72:159–165. https://doi.org/10.1016/j.hydromet.2003.10.002

    Article  CAS  Google Scholar 

  16. Sun X, Chen B, Yang X, Liu Y (2009) Technological conditions and kinetics of leaching copper from complex copper oxide ore. J Cent South Univ Technol 16:936–941. https://doi.org/10.1007/s11771-009-0156-6

    Article  CAS  Google Scholar 

  17. Habbache N, Alane N, Djerad S, Tifouti L (2009) Leaching of copper oxide with different acid solutions. Chem Eng J 152:503–508. https://doi.org/10.1016/j.cej.2009.05.020

    Article  CAS  Google Scholar 

  18. Liu W, Tang M-T, Tang C-B, He J, Yang S-H, Yang J-G (2010) Dissolution kinetics of low grade complex copper ore in ammonia-ammonium chloride solution. Trans Nonferrous Metals Soc China 20:910–917. https://doi.org/10.1016/S1003-6326(09)60235-1

    Article  CAS  Google Scholar 

  19. Ekmekyapar A, Aktaş E, Künkül A, Demirkiran N (2012) Investigation of leaching kinetics of copper from malachite ore in ammonium nitrate solutions. Metall Mater Trans B 43:764–772. https://doi.org/10.1007/s11663-012-9670-2

    Article  CAS  Google Scholar 

  20. Ekmekyapar A, Demirkıran N, Künkül A, Aktaş E (2015) Leaching of malachite ore in ammonium sulfate solutions and production of copper oxide. Braz J Chem Eng 32:155–165. https://doi.org/10.1590/0104-6632.20150321s00003211

    Article  CAS  Google Scholar 

  21. Liu M, Wen J, Tan G, Liu G, Wu B (2016) Experimental studies and pilot plant tests for acid leaching of low-grade copper oxide ores at the Tuwu copper mine. Hydrometallurgy 165:227–232. https://doi.org/10.1016/j.hydromet.2016.04.009

    Article  CAS  Google Scholar 

  22. Mohagheghi M, Askari M (2016) Copper recovery from reverberatory furnace flue dust. Int J Miner Process 157:205–209. https://doi.org/10.1016/j.minpro.2016.11.010

    Article  CAS  Google Scholar 

  23. Tanda BC, Eksteen JJ, Oraby EA (2017) An investigation into the leaching behaviour of copper oxide minerals in aqueous alkaline glycine solutions. Hydrometallurgy 167:153–162. https://doi.org/10.1016/j.hydromet.2016.11.011

    Article  CAS  Google Scholar 

  24. Hossain MS, Yahaya ANA, Yacob LS, Abdul Rahim MZ, Yusof NNM, Bachmann RT (2018) Selective recovery of copper from waste mobile phone printed circuit boards using sulphuric acid leaching. Mater Today Proc 5:21698–21702. https://doi.org/10.1016/j.matpr.2018.07.021

    Article  CAS  Google Scholar 

  25. Nicol MJ (2018) The kinetics of the dissolution of malachite in acid solutions. Hydrometallurgy 177:214–217. https://doi.org/10.1016/j.hydromet.2018.03.017

    Article  CAS  Google Scholar 

  26. Li B, Wang X, Wei Y, Wang H, Barati M (2018) Extraction of copper from copper and cadmium residues of zinc hydrometallurgy by oxidation acid leaching and cyclone electrowinning. Miner Eng 128:247–253. https://doi.org/10.1016/j.mineng.2018.09.007

    Article  CAS  Google Scholar 

  27. Stanković V, Milošević V, Milićević D, Gorgievski M, Bogdanović G (2018) Reprocessing of the old flotation tailings deposited on the RTB BOR tailings pond—a case study. Chem Ind Chem Eng Q 24:333–344. https://doi.org/10.2298/CICEQ170817005S

    Article  Google Scholar 

  28. Bai S, Fu X, Li C, Wen S (2018) Process improvement and kinetic study on copper leaching from low-grade cuprite ores. Physicochem Probl Miner Process 54:300–310. https://doi.org/10.5277/ppmp1818

    Article  CAS  Google Scholar 

  29. Wang G, Liu Y, Tong L, Jin Z, Chen G, Yang H (2019) Effect of temperature on leaching behavior of copper minerals with different occurrence states in complex copper oxide ores. Trans Nonferr Metals Soc China 29:2192–2201. https://doi.org/10.1016/S1003-6326(19)65125-3

    Article  CAS  Google Scholar 

  30. Li H, Oraby E, Eksteen J (2020) Extraction of copper and the co-leaching behaviour of other metals from waste printed circuit boards using alkaline glycine solutions. Resour Conserv Recycl 154:104624. https://doi.org/10.1016/j.resconrec.2019.104624

    Article  Google Scholar 

  31. Conejeros V, Pérez K, Ricardo IJ, Castillo J, Hernández P, Toro N (2020) Novel treatment for mixed copper ores: leaching ammonia–precipitation–flotation (L.A.P.F.). Miner Eng 149:106242. https://doi.org/10.1016/j.mineng.2020.106242

    Article  CAS  Google Scholar 

  32. Oluokun OO, Otunniyi IO (2020) Kinetic analysis of Cu and Zn dissolution from printed circuit board physical processing dust under oxidative ammonia leaching. Hydrometallurgy 193:105320. https://doi.org/10.1016/j.hydromet.2020.105320

    Article  CAS  Google Scholar 

  33. Shi G, Liao Y, Su B, Zhang Y, Wang W, Xi J (2020) Kinetics of copper extraction from copper smelting slag by pressure oxidative leaching with sulfuric acid. Sep Purif Technol 241:116699. https://doi.org/10.1016/j.seppur.2020.116699

    Article  CAS  Google Scholar 

  34. Zakrzewska-Koltuniewicz G, Herdzik-Konieckoa I, Cojocarub C, Chajduk E (2014) Experimental design and optimization of leaching process for recovery of valuable chemical elements (U, La, V, Mo, Yb and Th) from low-grade uranium ore. J Hazard Mater 275:136–145. https://doi.org/10.1016/j.jhazmat.2014.04.066

    Article  CAS  Google Scholar 

  35. Montgomery DC (2001) Design and analysis of experiments. Wiley, New York

    Google Scholar 

  36. Myers RH, Montgomery DC (2002) Response surface methodology: process and product optimization using designed experiments, 2nd edn. Wiley, New York

    Google Scholar 

  37. Zhang Z, Peng J, Srinivasakannanc C, Zhang Z, Zhang L, Fernández Y, Menéndez JA (2010) Leaching zinc from spent catalyst: process optimization using response surface methodology. J Hazard Mater 176:1113–1117. https://doi.org/10.1016/j.jhazmat.2009.11.125

    Article  CAS  Google Scholar 

  38. Javed U, Farooq R, Shehzad F, Khan Z (2018) Optimization of HNO3 leaching of copper from old AMD Athlon processors using response surface methodology. J Environ Manage 211:22–27. https://doi.org/10.1016/j.jenvman.2018.01.026

    Article  CAS  Google Scholar 

  39. Bezera MA, Santelli RE, Oliveira EP, Villar LS, Escaleira LA (2008) Review response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 76:965–977. https://doi.org/10.1016/j.talanta.2008.05.019

    Article  CAS  Google Scholar 

  40. Maran JP, Nivetha CV, Priya B, Al-Dhabi NA, Ponmurugan K, Blessing Manoj JJ (2016) Modeling of polysaccharide extraction from Gossypium arboreum L. seed using central composite rotatable design. Int J Biol Macromol 86:857–864. https://doi.org/10.1016/j.ijbiomac.2016.01.094

    Article  CAS  Google Scholar 

  41. Rao S, Yang T, Zhang D, Liu WF, Chen L, Hao Z, Xiao Q, Wen JF (2015) Leaching of low grade zinc oxide ores in NH4Cl–NH3 solutions with nitrilotriacetic acid as complexing agents. Hydrometallurgy 158:101–106. https://doi.org/10.1016/j.hydromet.2015.10.013

    Article  CAS  Google Scholar 

  42. Habashi F (1968) Extractive metallurgy. General principle, vol 1. Gordon & Breach, Science Publishers Inc., New York

    Google Scholar 

  43. Espiari S, Rashchi F, Sadrnezhaad SK (2006) Hydrometallurgical treatment of tailings with high zinc content. Hydrometallurgy 82:54–62. https://doi.org/10.1016/j.hydromet.2006.01.005

    Article  CAS  Google Scholar 

  44. Oediyani S, Ariyanto U, Febriana E (2019) Effect of concentration, agitation, and temperature of Pomalaa limonitic nickel ore leaching using hydrochloric acid. IOP Conf Ser Mater Sci Eng 478:012013. https://doi.org/10.1088/1757-899X/478/1/012013

    Article  CAS  Google Scholar 

  45. Levenspiel O (1999) Chemical reaction engineering, 3rd edn. Wiley, New York

    Google Scholar 

  46. Adebayo AO, Olasehinde EF (2015) Leaching kinetics of lead from galena with acidified hydrogen peroxide and sodium chloride solution. Trans Inst Min Metall Sect C 124:137–142. https://doi.org/10.1179/1743285515Y.0000000001

    Article  CAS  Google Scholar 

  47. Tanda BC, Eksteen JJ, Oraby EA, O'Connor GM (2019) The kinetics of chalcopyrite leaching in alkaline glycine/glycinate solutions. Miner Eng 135:118–128. https://doi.org/10.1016/j.mineng.2019.02.035

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asghar Azizi.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

The contributing editor for this article was T. Hirato.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nozari, I., Azizi, A. Experimental and Kinetic Modeling Investigation of Copper Dissolution Process from an Iranian Mixed Oxide/Sulfide Copper Ore. J. Sustain. Metall. 6, 437–450 (2020). https://doi.org/10.1007/s40831-020-00291-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40831-020-00291-6

Keywords

Navigation