Skip to main content

Advertisement

Log in

A Comprehensive Modeling as a Tool for Developing New Mini Blast Furnace Technologies Based on Biomass and Hydrogen Operation

  • Research Article
  • Published:
Journal of Sustainable Metallurgy Aims and scope Submit manuscript

Abstract

The mini blast furnace based on biomass operation is a viable technology that neutralizes fossil carbon emissions in the production route of green hot metal. In this study, we analyze the actual mini blast furnace operation and propose new operational practices using the multiphase multicomponent modeling approach. We newly introduced additional chemical species and rate equations to account for the proposed new simulated scenarios. The model results for actual operation are favorably compared with the industrial data. Thus, new promising operational techniques based on high rates of pulverized charcoal and hot hydrogen injections are proposed and analyzed from the point of view of the process efficiency and carbon intensity. It is demonstrated that the combined operational conditions of higher pulverized charcoal and hot hydrogen injection furnish the best performance for cleaner hot metal production with the lowest carbon intensity.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

\(C_{pi}\) :

Heat capacity of the i phases (J/kg/K)

\(D_{n}^{eff}\) :

Effective diffusivity of the chemical species (m2/s)—n stands for the chemical species indexes of the phases

E i l :

Energy exchange among the phases i and l (J/kg)

\(F_{j}^{i - 1}\) :

Interaction force in j direction between i and l phases, (N/m3/s)

\(h\) :

Enthalpy of the phase (kJ/kg)

M:

Molar weight of the specie (kg/mole)

\(P_{i}\) :

Phase pressure (Pa)—i represents the indexes of the coordinates directions

\(r_{m}\) :

Rates of chemical reactions or phase transformations (kmol/m3/s)—m stands for the index of the chemical reaction

\(x_{i}\) :

Spatial coordinates for i directions (m)—i represents the coordinate directions

\(t\) :

Time (s)

u i,j :

Velocities components of the i phases (m/s)—j represents the coordinate directions.

\(\vec{U}_{i}\) :

Phase velocity vector (i = gas, solid, hot metal, slag and pulverized charcoal) (m/s

Δhm :

Enthalpy of the reaction (J/mol)—m stands for the index of the chemical reaction

\(\varphi_{n}\) :

Mass fraction of specie n in Eq. 5, (calculated by the model) (kg/kg)

\(\phi_{m}\) :

Solid diameter shape factor (m = sinter feed, granular charcoal, pellet, lump) (-)

\(\varepsilon_{i}\) :

Volume fractions of i phases (i = gas, solid, hot metal, slag, pulverized charcoal) (m3/m3)

\(\rho_{i}\) :

Phase density (i = gas, solid, hot metal, slag, pulverized charcoal) (kg/m3)

\(\mu_{i}^{eff}\) :

Phase effective viscosity (i = gas, solid, hot metal, slag, pulverized charcoal) (Pa.s

References

  1. Castro JA. (2000). A multi-dimensional transient mathematical model of blast furnace based on multi-fluid model. Ph.D. Thesis, Institute for Advanced Materials Processing. Tohoku University, Japan.

  2. Hashimoto Y, Okamoto Y, Kaise T, Sawa Y, Kano M (2019) Practical operation guidance on thermal control of blast furnace. ISIJ Int 59:1573–1581. https://doi.org/10.2355/isijinternational.ISIJINT-2019-119

    Article  CAS  Google Scholar 

  3. Yagi J (1993) Mathematical modeling of the flow of four fluids in a packed bed. ISIJ Int 33:619–639. https://doi.org/10.2355/isijinternational.33.619

    Article  CAS  Google Scholar 

  4. Castro JA, Nogami H, Yagi J (2000) Transient mathematical model of blast furnace based on multi-fluid concept, with application to high PCI operation. ISIJ Int 40:637–646. https://doi.org/10.2355/isijinternational.40.637

    Article  Google Scholar 

  5. Chu M, Nogami H, Yagi J (2004) Numerical analysis on blast furnace performance under operation with top gas recycling and carbon composite agglomerates charging. ISIJ Int 44:2159–2167. https://doi.org/10.2355/isijinternational.44.2159

    Article  CAS  Google Scholar 

  6. Castro JA, Baltazar AWS, Silva AJ, D’Abreu JC, Yagi J (2005) Evaluation of the performance of the blast furnace operating with self-reducing pellet using the computational simulation. TMMM Tecn Met Mat Min 2:45–50. https://doi.org/10.4322/tmm.00202009

    Article  CAS  Google Scholar 

  7. Castro JA, Nogami H, Yagi J (2002) Three-dimensional multiphase mathematical modeling of the blast furnace based on the multifluid model. ISIJ Int 42:44–52. https://doi.org/10.2355/isijinternational.42.44

    Article  Google Scholar 

  8. Mandova H, Leduc S, Wang C, Wetterlund E, Patrizio P, Gale W, Kraxner F (2018) Possibilities for CO2 emission reduction using biomass in European integrated steel plants. Biom Bioeng 115:231–243. https://doi.org/10.1016/j.biombioe.2018.04.021

    Article  CAS  Google Scholar 

  9. Suopajärvi H, Pongrácz E, Fabritius T (2013) The potential of using biomass-based reducing agents in the blast furnace: a review of thermochemical conversion technologies and assessments related to sustainability. Renew Sustain Energy Rev 25:511–528. https://doi.org/10.1016/j.rser.2013.05.005

    Article  CAS  Google Scholar 

  10. Raupenstrauch H, Klaus Doschek-Held K, Rieger J, Reiter W (2019) RecoDust-an efficient way of processing steel mill dusts. J Sustain Metal 5:310–318. https://doi.org/10.1007/s40831-019-00216-y

    Article  Google Scholar 

  11. Andersson A, Gullberg A, Kullerstedt A, Ahmed H, Sundqvist-Okvist L, Samuelsson C (2019) Upgrading of blast furnace sludge and recycling of the low-zinc fraction via cold-bonded briquettes. J Sustain Metal 5:350–361. https://doi.org/10.1007/s40831-019-00225-x

    Article  Google Scholar 

  12. Mousa E, Lundgren M, Sundqvist Ökvist L, From LE, Robles A, Hällsten SA, Sundelin B, Friberg H, El-Tawil A (2019) Reduced carbon consumption and CO2 emission at the blast furnace by use of briquettes containing torrefied sawdust. J. Sustain Metal 5:391–401. https://doi.org/10.1007/s40831-019-00229-7

    Article  Google Scholar 

  13. Castro JA, Takano C, Yagi J (2017) A theoretical study using the multiphase numerical simulation technique for effective use of H2 as blast furnaces fuel. J Mater Res Technol 6:258–270. https://doi.org/10.1016/j.jmrt.2017.05.007

    Article  CAS  Google Scholar 

  14. Rocha EP, Guilherme VS, Castro JA, Sasaki Y, Yagi J (2013) Analysis of synthetic natural gas injection into charcoal blast furnace. J Mater Res Technol 2:255–262. https://doi.org/10.1016/j.jmrt.2013.02.015

    Article  CAS  Google Scholar 

  15. Castro JA, Silva AJ, Nogami H, Yagi J (2004) Simulação computacional da injeção de carvão pulverizado nas ventaneiras de mini altos-fornos. TMMM Tecn Met Mat Min 1:59–62. https://doi.org/10.4322/tmm.00102013

    Article  Google Scholar 

  16. Matos UF, Castro JA (2012) Modeling of self-reducing agglomerates charging in the mini blast furnace with top gas recycling. REM Int Eng J 65:65–71

    Google Scholar 

  17. Lemos LR, Rocha SHSF, Castro LFA, Assunção GBM, Silva GLR (2019) Mechanical strength of briquettes for use in blast furnaces. REM Int Eng J 72:63–69. https://doi.org/10.1590/0370-44672017720156

    Article  Google Scholar 

  18. Pintowantoro S, Nogami H, Yagi J (2004) Numerical analysis of static holdup of fine particles in blast furnace. ISIJ Int 44:304–309. https://doi.org/10.2355/isijinternational.44.304

    Article  CAS  Google Scholar 

  19. Ueda S, Natsui S, Nogami H, Yagi J, Ariyama T (2010) Recent progress and future perspective on mathematical modeling of blast furnace. ISIJ Int 50:914–923. https://doi.org/10.2355/isijinternational.50.914

    Article  CAS  Google Scholar 

  20. Dong XF, Yu AB, Chew SJ, Zulli P (2010) Modelling of blast furnace with layered cohesive zone. Metal Mater Trans B 41B:330–349. https://doi.org/10.1007/s11663-009-9327-y

    Article  CAS  Google Scholar 

  21. Natsui S, Ueda S, Nogami H, Kano J, Inoue R, Ariyama T (2011) Dynamic analysis of gas and solid flows in blast furnace with shaft gas injection by hybrid model of DEM-CFD. ISIJ Int 51:51

    Article  CAS  Google Scholar 

  22. Ariyama T, Natsui S, Kon T, Ueda S, Kikuchi S, Nogami H (2014) Recent progress on advanced blast furnace mathematical models based on discrete method. ISIJ Int 54:1457–1471. https://doi.org/10.2355/isijinternational.54.1457

    Article  CAS  Google Scholar 

  23. Castro JA, Araujo GM, Mota IO, Sasaki Y, Yagi J (2013) Analysis of the combined injection of pulverized coal and charcoal into large blast furnaces. J Mater Res Technol 2:308–314. https://doi.org/10.1016/j.jmrt.2013.06.003

    Article  CAS  Google Scholar 

  24. Castro JA, Silva AJ, Sasaki Y, Yagi J (2011) A six-phases 3-D model to study simultaneous injection of high rates of pulverized coal and charcoal into the blast furnace with oxygen enrichment. ISIJ Int 51:748–758. https://doi.org/10.2355/isijinternational.51.748

    Article  Google Scholar 

  25. Castro JA, Nogami H, Yagi J (2002) Numerical investigation of simultaneous injection of pulverized coal and natural gas with oxygen enrichment to the blast furnace. ISIJ Int 42:1203–1211. https://doi.org/10.2355/isijinternational.42.1203

    Article  Google Scholar 

  26. Castro JA, Baltazar AWS (2009) Estudo numérico da reciclagem de CO2 na zona de combustão do alto forno. TMMM Tecn Met Mat Min 6:13–18. https://doi.org/10.4322/tmm.00601003

    Article  Google Scholar 

  27. Castro JA, Nogami H, Yagi J (2001) Numerical analysis of multiple injection of pulverized coal, pre-reduced iron ore and flux with oxygen enrichment to the blast furnace. ISIJ Int 41:18–24. https://doi.org/10.2355/isijinternational.41.18

    Article  Google Scholar 

  28. Wang X, Fu G, Li W, Zhu M (2019) Numerical analysis of the effect of water gas shift reaction on flash reduction behavior of hematite with syngas. ISIJ Int 59:215

    Google Scholar 

  29. Baltazar AWS, Castro JA, Silva AJ (2006) Modelagem e simulação computacional da injeção de carvão pulverizado no canal adutor da raceway de altos-fornos. Rev Est Tecn 2:65–77

    Google Scholar 

  30. Melaen MC (1992) Calculation of fluid flows with staggered and nonstaggered curvilinear nonorthogonal grids-the theory. Numer Heat Transf B 21:1–19. https://doi.org/10.1080/10407799208944919

    Article  Google Scholar 

  31. Karki KC, Patankar SV (1988) Calculation procedure for viscous incompressible flows in complex geometries. Numer Heat Transf B14(1988):295–307. https://doi.org/10.1080/10407788808913645

    Article  Google Scholar 

  32. Patankar SV, Spalding DB (1972) A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. Int J Heat Mass Transfer 15:1787–1806. https://doi.org/10.1016/0017-9310(72)90054-3

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of the agencies CAPES—Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil; CNPq—National Council for Scientific and Technological Development and Faperj-Rio de Janeiro Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose Adilson de Castro.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical Approval

On behalf of all authors, the corresponding author states that this work follows ethical standards.

Additional information

The contributing editor for this article was U. Pal.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (AVI 36015 kb)

Supplementary file2 (AVI 21723 kb)

Supplementary file3 (AVI 36471 kb)

Supplementary file4 (AVI 21146 kb)

Supplementary file5 (AVI 35039 kb)

Supplementary file6 (AVI 20730 kb)

Supplementary file7 (AVI 6484 kb)

Supplementary file8 (AVI 6551 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Castro, J.A., de Medeiros, G.A., de Oliveira, E.M. et al. A Comprehensive Modeling as a Tool for Developing New Mini Blast Furnace Technologies Based on Biomass and Hydrogen Operation. J. Sustain. Metall. 6, 281–293 (2020). https://doi.org/10.1007/s40831-020-00274-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40831-020-00274-7

Keywords

Navigation