Solid Phase
The stable phase obtained at all temperatures in the range 1–13 °C for cooling crystallization and at 25 °C for antisolvent crystallization at different ethanol-to-strip liquor ratios was determined by powder XRD to be ammonium scandium hexafluoride (NH4)3ScF6 of monoclinic structure, PDF card 00-040-0595 [31, 33], see Fig. 1.
Solubility
The solubility was calculated for the phase (NH4)3ScF6 on the basis of total Sc concentration obtained by ICP-OES. Figure 2a shows the solubility in g/L of (NH4)3ScF6 at different temperatures in the range 1–13 °C in a 3 mol/L NH4F strip liquor (A). Figure 2b shows the solubility data obtained using strip liquors (B) and (C) at varying ethanol-to-strip liquor volumetric ratios for antisolvent crystallization at 25 °C.
As expected and shown in Fig. 2a, the solubility decreased almost linearly with the decreasing temperature. It can be noted that complete recovery of the salt is practically impossible due to the solubility limitation at the lowest temperature of 1 °C investigated. The solubility data obtained is indispensable in conducting controlled cooling crystallization experiments.
Figure 2b shows that the solubility decreased asymptotically with the increasing amount of ethanol added almost approaching zero at ethanol-to-strip liquor volumetric ratios above 1. This means that a high recovery close to 100% of the stable phase can be obtained as depicted in Fig. 3b. The solubilities of (NH4)3ScF6 obtained using strip liquor (C) at ratios 0.2 and 1.4 were similar to the data obtained for strip liquor (B). It was also observed that the pH of the mixtures increased almost linearly between 6.1 and 6.8 with the increasing quantity of ethanol.
Yield
Figures 3a and b show the cumulative yield (%) obtained during cooling and antisolvent crystallization, respectively. Equation 1 was used to calculate the yield for cooling crystallization (Yc, %), where, Ci is the initial Sc concentration in the strip liquor and Cs is the solubility at the specific temperature.
$$ Y_{c} ,\% = \frac{{100\left( {C_{i} - C_{s} } \right)}}{{C_{i} }} $$
(1)
For antisolvent crystallization, the concentrations in Eq. 1 were multiplied by the respective solution volumes due to significant changes in volume upon addition of ethanol. It should be noted that the volumes are not additive upon adding ethanol to the strip liquor. The densities of the new solvent mixtures were determined to facilitate a correct mass balance. The yield was also determined by weighing the dry solid samples, Yw. During cooling crystallization, the cumulative yield increased with the decreasing operating temperature due to reduction in solubility, see Fig. 3a. It can be noted that the highest yield obtained at 1 °C was below 50%.
It is recommended to investigate cooling crystallization at subzero temperatures to determine if the yield would increase remarkably or asymptotically. However, employing subzero temperatures to the dilute strip liquor could result in formation of large quantities of ice, which could entrap all the salt precipitate. This could be uneconomical given that the Sc content to be recovered is only a minute quantity. Likewise, Fig. 3b shows the cumulative yield (%) obtained during antisolvent crystallization. High yields above 65% were obtained even at the lowest mixing ratio of 0.2. It can be noted that a ratio of 0.8 is optimal, and any further increase in ratio does not result in significant increase in the yield. Although huge quantities of ethanol are required, the increase in raw material costs is counterbalanced by the fact that the ethanol can be recovered by distillation and reused in the process. The data in Fig. 3 also indicate that combining the two crystallization techniques and conducting antisolvent crystallization at a lower temperature could improve the product yield while reducing the antisolvent required.
In both cases, the yield obtained by weighing the solid (Yw) is lower than the calculated yield (Yc). This can be attributed to dissolution of the solid product during the filtration and washing stages. This difference is more pronounced for antisolvent crystallization probably due to the minute crystals obtained as shown in Fig. 5, hence low filterability and greater dissolution extent. In addition, part of the crystals could have passed through the membrane filter.
Morphology and Crystal Size
Figure 4 shows the morphology of the crystals obtained by cooling crystallization at 13, 6 and 1 °C. The crystals obtained by cooling crystallization had regular prismatic shapes indicating that a highly crystalline (NH4)3ScF6 product can be obtained. The product obtained at 13 °C had numerous fines of sizes approximately 10 μm probably due to primary nucleation. Larger crystals were observed for the lower temperatures possibly due to carry-over of some fine crystals during filtration, which in turn, induced secondary nucleation in subsequent lower temperature experiments.
The effect of the thermal history of the solution on inducing nucleation at a higher temperature, hence lower supersaturation could also play a role [12]. When a solution is cooled to supersaturation resulting in nucleation, the thermal treatment, that is, the heating temperature and duration that the solution undergoes during dissolution of crystals has an effect on the metastable zone width, induction time, hence nucleation upon cooling the same solution again. In general, it was hypothesized that during the initial dissolution phase of crystals, the solution retains some molecular assemblies that promote nuclei formation at a reduced supersaturation [34, 35]. A similar phenomenon could have occurred upon filtration and washing of the solid product resulting in molecular assemblies passing through the membrane filter into the solution that was cooled to lower temperatures in subsequent experiments. Crystals of sizes approaching 50 μm were observed at 6 and 1 °C. By designing a seeded cooling crystallization process, there is potential to obtain even larger product crystals.
Figure 5 shows the morphology of crystals obtained from strip liquor (C) by antisolvent crystallization at 25 °C at ethanol-to-strip liquor ratios of 0.2 and 1.4, respectively.
For antisolvent crystallization, discrete minute crystals of defined shapes and sizes of approximately < 2 μm were observed. The fine crystals were attributed to a very high supersaturation generated upon adding the ethanol to the strip liquor, resulting in dominance of nucleation over crystal growth. The crystals decreased in size with the increasing ethanol content due to the increasing supersaturation. The ethanol was added wholly and it was observed that crystallization was instantaneous throughout the entire solution volume due to high bulk supersaturation. For this reason, it is very imperative to control the rate of supersaturation generation in order to obtain larger crystals. This can be accomplished by controlling the rate of addition of the antisolvent, coupled with adequate agitation to prevent high local supersaturation at the point of mixing. Seeding can also improve the crystal sizes since it promotes crystal growth. If this control is mastered, antisolvent crystallization serves as a better alternative for the recovery of (NH4)3ScF6 from the strip liquor, since higher yields are obtained with possible reuse of the ethanol solvent for a cost effective operation.
Impurity Incorporation
Figure 6 shows the impurity (Ti, Fe) content in the solid product obtained from strip liquor (C) by antisolvent crystallization as determined by ICP-OES after dissolving the solid samples.
The Fe and Ti contents in the solid product increased upon increasing the AS/SL ratio from 0.2 to 1.4. The solid product purities obtained at ratios 0.2 and 1.4 were 98.9 and 98.7%, respectively. After performing a mass balance, it was observed that the concentration of Fe in the supernatant decreased by more than 90% with the increasing AS concentration, while the concentration of Ti remained fairly constant. The precipitation percentages of Fe were computed by Eq. 2, where P is the precipitation percentage, subscript ‘Me’ refers to the metal impurity (Fe), CMe,i and CMe,f are the initial and final concentrations of the metal in solution, and Vi and Vf are the initial and final volumes, respectively.
$$ P_{Me} = \frac{{C_{Me,i} .V_{i} - C_{Me,f} .V_{f} }}{{C_{Me,i} .V_{i} }} \times 100 $$
(2)
The precipitation percentage of Fe was high (98.4 and 98.2% at an AS/SL ratio of 0.8 and 1.4, respectively), but since the initial concentration in the strip liquor is quite low, this does not translate into very high impurity concentrations in the solid product. The Fe and Ti detected in the solid phase could have either coprecipitated as separate phases (e.g., (NH4)3FeF6 and (NH4)2TiF6) and/or have been incorporated in the (NH4)3ScF6 crystal lattice. The solubilities of the Fe and Ti phases are unknown under the experimental conditions. The only phase detected by Powder XRD was (NH4)3ScF6 (Fig. 1).
Further investigations were conducted to gain an insight into the mechanism of impurity uptake into the solid product. Table 2 shows the average Ti and Fe concentrations in the solid precipitate, in wt%, as determined by EDS analyses at different ratios for two sets of experiments.
Table 2 Impurity concentrations (detected by ESEM-EDS) The results are similar to the ones obtained by ICP-OES (after dissolving the solid sample and analyzing the concentrations in the liquid phase) presented in Fig. 6 except that the Fe content decreased slightly with the increasing ethanol-to-strip liquor ratio. Appendix A shows the EDS analysis for one of the experiments conducted at a ratio of 0.8. The EDS analyses revealed that Fe was homogeneously distributed throughout the solid surface layer, while Ti was only detected in lower concentrations at a few specific regions. The even distribution of Fe in the surface layer could imply that Fe was incorporated into the (NH4)3ScF6 crystal lattice substituting Sc ions proportionately, otherwise if Fe had precipitated as separate crystals homogeneously spread in the solid product, it would have been expected that the Fe content would be much higher than the percentages detected by EDS. The ionic radii of Sc3+ and Fe3+ are 74.5 and 64.5 pm, respectively [36]. The ionic radii of Ti4+ is 60.5 pm [36], and Ti4+ is less likely to compete with Sc3+ ions due to the fact that Ti binds strongly to oxygen exhibiting the characteristic titanyl bond [37]. Ti was detected only at a few points, where it was detected together with Sc and Fe indicating that it could have precipitated as a mixed phase.
In the downstream final refinement stage of Sc by sublimation, impurities that have comparable or higher vapor pressure than Sc (e.g., Fe) are difficult to remove, while it is easier to separate Ti due to its lower vapor pressure at the sublimation temperatures employed (> 2000 °C). Therefore, it would be desirable to further reduce the Fe content in the solid product in order to obtain a purer final scandium metal. There is potential to improve the purity of the product by controlling the rate of ethanol addition and seeding as shown in a preliminary study in our lab [38].