Skip to main content
Log in

Effects of Remelting on the Properties of a Superelastic Cu–Al–Mn Shape Memory Alloy Fabricated by Laser Powder Bed Fusion

  • ORIGINAL RESEARCH ARTICLE
  • Published:
Shape Memory and Superelasticity Aims and scope Submit manuscript

Abstract

Laser powder bed fusion (LPBF) constitutes a promising alternative to directly produce Cu-based shape memory parts with high superelasticity due to the fact that the grain size and morphology as well as the texture can be tailored during processing. It is known that immediate laser remelting of previously processed layers during LPBF can serve as an important and complementary method to improve part density and to adjust the microstructure and mechanical behavior. As a consequence, this study focuses on the effects of an additional remelting step on the material properties of an additively fabricated Cu71.6Al17Mn11.4 (at.%) shape memory alloy (SMA). Firstly, the effects of different remelting parameters, obtained via systematically changing the hatching distance and scanning speed, on the sample density and transformation temperatures were analyzed. Secondly, microstructural observations as well as incremental compression tests were performed to establish the relationships between the applied remelting process parameters, the microstructure, and the superelastic properties. The comparison of the results for remelted and non-remelted counterparts clearly proves that a subsequent exposure of already solidified layers can serve as an adaptive tool to improve the performance of Cu-based SMAs and to allow the fabrication of locally adapted shape memory parts for application-oriented scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data supporting the findings of this study are available from the corresponding authors on reasonable request.

References

  1. Gu D, Shi X, Poprawe R, Bourell DL, Setchi R, Zhu J (2021) Material-structure-performance integrated laser-metal additive manufacturing. Science. https://doi.org/10.1126/science:abg1487

    Article  Google Scholar 

  2. Gustmann T, Gutmann F, Wenz F et al (2020) Properties of a superelastic NiTi shape memory alloy using laser powder bed fusion and adaptive scanning strategies. Prog Addit Manuf 5:11–18. https://doi.org/10.1007/s40964-020-00118-6

    Article  Google Scholar 

  3. Yasa E, Kruth JP, Deckers J (2011) Manufacturing by combining selective laser melting and selective laser erosion/laser re-melting. CIRP Ann Manuf Technol 60:263–266. https://doi.org/10.1016/j.cirp.2011.03.063

    Article  Google Scholar 

  4. Narasimharaju SR, Zeng W, See TL et al (2022) A comprehensive review on laser powder bed fusion of steels: processing, microstructure, defects and control methods, mechanical properties, current challenges and future trends. J Manuf Process 75:375–414. https://doi.org/10.1016/j.jmapro.2021.12.033

    Article  Google Scholar 

  5. Blakey-Milner B, Gradl P, Snedden G et al (2021) Metal additive manufacturing in aerospace: a review. Mater Des 209:110008. https://doi.org/10.1016/j.matdes.2021.110008

    Article  CAS  Google Scholar 

  6. Lu HZ, Yang C, Luo X et al (2019) Ultrahigh-performance TiNi shape memory alloy by 4D printing. Mater Sci Eng A 763:138166. https://doi.org/10.1016/j.msea.2019.138166

    Article  CAS  Google Scholar 

  7. Zhou K (2022) Additive manufacturing: materials, functionalities and applications, 1st edn. Springer, Cham

    Google Scholar 

  8. Ma J, Franco B, Tapia G et al (2017) Spatial control of functional response in 4D-printed active metallic structures. Sci Rep 7:1–8. https://doi.org/10.1038/srep46707

    Article  Google Scholar 

  9. Wang X, Kustov S, Van Humbeeck J (2018) A short review on the microstructure, transformation behavior and functional properties of NiTi shape memory alloys fabricated by selective laser melting. Materials (Basel) 11:1683. https://doi.org/10.3390/ma11091683

    Article  CAS  Google Scholar 

  10. Nematollahi M, Toker G, Saghaian SE et al (2019) Additive manufacturing of Ni-rich NiTiHf20: manufacturability, composition, density, and transformation behavior. Shape Mem Superelasticity 5:113–124. https://doi.org/10.1007/s40830-019-00214-9

    Article  Google Scholar 

  11. Farjam N, Nematollahi M, Andani MT et al (2020) Effects of size and geometry on the thermomechanical properties of additively manufactured NiTi shape memory alloy. Int J Adv Manuf Technol 107:3145–3154. https://doi.org/10.1007/s00170-020-05071-w

    Article  Google Scholar 

  12. Alberto C, Jacopo B, Fabrizio F et al (2020) Selective laser melting of NiTi shape memory alloy: processability, microstructure, and superelasticity. Shape Mem Superelasticity. https://doi.org/10.1007/s40830-020-00298-8

    Article  Google Scholar 

  13. Xue L, Atli KC, Zhang C et al (2022) Laser powder bed fusion of defect-free NiTi shape memory alloy parts with superior tensile superelasticity. Acta Mater 229:117781. https://doi.org/10.1016/j.actamat.2022.117781

    Article  CAS  Google Scholar 

  14. Straub T, Fell J, Zabler S et al (2023) Characterization of filigree additively manufactured NiTi structures using micro tomography and micromechanical testing for metamaterial material models. Materials (Basel) 16:676. https://doi.org/10.3390/ma16020676

    Article  CAS  Google Scholar 

  15. Gustmann T, Neves A, Kühn U et al (2016) Influence of processing parameters on the fabrication of a Cu–Al–Ni–Mn shape-memory alloy by selective laser melting. Addit Manuf 11:23–31. https://doi.org/10.1016/j.addma.2016.04.003

    Article  CAS  Google Scholar 

  16. Gustmann T, dos Santos JM, Kühn U et al (2016) Properties of Cu-based shape-memory alloys prepared by selective laser melting. Shape Mem Superelasticity 3:24–36. https://doi.org/10.1007/s40830-016-0088-6

    Article  Google Scholar 

  17. Gustmann T, Schwab H, Kühn U, Pauly S (2018) Selective laser remelting of an additively manufactured Cu–Al–Ni–Mn shape-memory alloy. Mater Des 153:129–138. https://doi.org/10.1016/j.matdes.2018.05.010

    Article  CAS  Google Scholar 

  18. Tian J, Zhu W, Wei Q et al (2019) Process optimization, microstructures and mechanical properties of a Cu-based shape memory alloy fabricated by selective laser melting. J Alloys Compd 785:754–764. https://doi.org/10.1016/j.jallcom.2019.01.153

    Article  CAS  Google Scholar 

  19. Babacan N, Pauly S, Gustmann T (2021) Laser powder bed fusion of a superelastic Cu–Al–Mn shape memory alloy. Mater Des 203:109625. https://doi.org/10.1016/j.matdes.2021.109625

    Article  CAS  Google Scholar 

  20. Pérez-cerrato M, Fraile I, Gómez-cortés JF et al (2022) Designing for shape memory in additive manufacturing of Cu–Al–Ni shape designing for shape memory alloy processed by laser powder bed fusion. Materials (Basel) 15:6284. https://doi.org/10.3390/ma15186284

    Article  CAS  Google Scholar 

  21. Mazzer EM, Kiminami CS, Gargarella P et al (2014) Atomization and selective laser melting of a Cu–Al–Ni–Mn shape memory alloy. Mater Sci Forum 802:343–348. https://doi.org/10.4028/www.scientific.net/MSF.802.343

    Article  Google Scholar 

  22. Gargarella P, Mazzer EM, Basilio LA et al (2015) Phase formation, thermal stability and mechanical properties of a Cu–Al–Ni–Mn shape memory alloy prepared by selective laser melting. Mater Res 18:35–38. https://doi.org/10.1590/1516-1439.338914

    Article  CAS  Google Scholar 

  23. Babacan N, Pilz S, Pauly S et al (2023) Tailoring the superelastic properties of an additively manufactured Cu–Al–Mn shape memory alloy via adjusting the scanning strategy. Mater Sci Eng A 862:144412. https://doi.org/10.1016/j.msea.2022.144412

    Article  CAS  Google Scholar 

  24. Mazzer EM, da Silva MR, Gargarella P (2022) Revisiting Cu-based shape memory alloys: recent developments and new perspectives. J Mater Res 37:162–182. https://doi.org/10.1557/s43578-021-00444-7

    Article  CAS  Google Scholar 

  25. Hou H, Simsek E, Stasak D et al (2017) Elastocaloric cooling of additive manufactured shape memory alloys with large latent heat. J Phys D Appl Phys 50:3–6. https://doi.org/10.1088/1361-6463/aa85bf

    Article  CAS  Google Scholar 

  26. Alagha AN, Hussain S, Zaki W (2021) Additive manufacturing of shape memory alloys: a review with emphasis on powder bed systems. Mater Des 204:109654. https://doi.org/10.1016/j.matdes.2021.109654

    Article  CAS  Google Scholar 

  27. Sutou Y, Omori T, Wang JJ et al (2004) Characteristics of Cu–Al–Mn-based shape memory alloys and their applications. Mater Sci Eng A 378:278–282. https://doi.org/10.1016/j.msea.2003.12.048

    Article  CAS  Google Scholar 

  28. Wang H, Huang H, Xie J (2017) Effects of strain rate and measuring temperature on the elastocaloric cooling in a columnar-grained Cu71Al17.5Mn11.5 shape memory alloy. Metals (Basel) 7:527. https://doi.org/10.3390/met7120527

    Article  CAS  Google Scholar 

  29. Lu NH, Chen CH (2021) Inhomogeneous martensitic transformation behavior and elastocaloric effect in a bicrystal Cu–Al–Mn shape memory alloy. Mater Sci Eng A 800:140386. https://doi.org/10.1016/j.msea.2020.140386

    Article  CAS  Google Scholar 

  30. Kise S, Araki Y et al (2021) Orientation dependence of plasticity and fracture in single-crystal superelastic Cu–Al–Mn SMA bars. J Mater Civ Eng 33:1–12. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003568

    Article  Google Scholar 

  31. Su T, Lu N, Chen C (2021) On the decrease in transformation stress in a bicrystal Cu–Al–Mn shape-memory alloy during cyclic compressive deformation. Materials (Basel) 14:4439. https://doi.org/10.3390/ma14164439

    Article  CAS  Google Scholar 

  32. Kusama T, Omori T, Saito T et al (2017) Ultra-large single crystals by abnormal grain growth. Nat Commun. https://doi.org/10.1038/s41467-017-00383-0

    Article  Google Scholar 

  33. Xu S, Kusama T, Xu X et al (2019) Large [001] single crystals via abnormal grain growth from columnar polycrystal. Materialia 6:100336. https://doi.org/10.1016/j.mtla.2019.100336

    Article  CAS  Google Scholar 

  34. Yang S, Zhang J, Chi M et al (2019) Excellent superelasticity of Cu–Al–Mn–Cr shape memory single crystal obtained only through annealing cast polycrystalline alloy. Scr Mater 165:20–24. https://doi.org/10.1016/j.scriptamat.2019.02.011

    Article  CAS  Google Scholar 

  35. Kainuma R (2018) Recent progress in shape memory alloys. Mater Trans 59:327–331. https://doi.org/10.2320/matertrans.M2017340

    Article  CAS  Google Scholar 

  36. Wang X, Yu J, Liu J et al (2020) Effect of process parameters on the phase transformation behavior and tensile properties of NiTi shape memory alloys fabricated by selective laser melting. Addit Manuf 36:101545. https://doi.org/10.1016/j.addma.2020.101545

    Article  CAS  Google Scholar 

  37. Rao H, Giet S, Yang K et al (2016) The influence of processing parameters on aluminium alloy A357 manufactured by selective laser melting. Mater Des 109:334–346. https://doi.org/10.1016/j.matdes.2016.07.009

    Article  CAS  Google Scholar 

  38. Laitinen V, Salminen A, Ullakko K (2019) First investigation on processing parameters for laser powder bed fusion of Ni–Mn–Ga magnetic shape memory alloy. J Laser Appl 31:022303. https://doi.org/10.2351/1.5096108

    Article  CAS  Google Scholar 

  39. Saedi S, Shayesteh N, Amerinatanzi A et al (2018) On the effects of selective laser melting process parameters on microstructure and thermomechanical response of Ni-rich NiTi. Acta Mater 144:552–560. https://doi.org/10.1016/j.actamat.2017.10.072

    Article  CAS  Google Scholar 

  40. Carter LN, Martin C, Withers PJ, Attallah MM (2014) The influence of the laser scan strategy on grain structure and cracking behaviour in SLM powder-bed fabricated nickel superalloy. J Alloys Compd 615:338–347. https://doi.org/10.1016/j.jallcom.2014.06.172

    Article  CAS  Google Scholar 

  41. Marattukalam JJ, Karlsson D, Pacheco V et al (2020) The effect of laser scanning strategies on texture, mechanical properties, and site-specific grain orientation in selective laser melted 316L SS. Mater Des. https://doi.org/10.1016/j.matdes.2020.108852

    Article  Google Scholar 

  42. Prasad K, Obana M, Ishii Y et al (2021) The effect of laser scanning strategies on the microstructure, texture and crystallography of grains exhibiting hot cracks in additively manufactured Hastelloy X. Mech Mater 157:103816. https://doi.org/10.1016/j.mechmat.2021.103816

    Article  Google Scholar 

  43. Karimi J, Antonov M, Kollo L, Prashanth KG (2022) Role of laser remelting and heat treatment in mechanical and tribological properties of selective laser melted Ti6Al4V alloy. J Alloys Compd 897:163207. https://doi.org/10.1016/j.jallcom.2021.163207

    Article  CAS  Google Scholar 

  44. Kuai Z, Li Z, Liu B et al (2022) Effects of remelting on the surface morphology, microstructure and mechanical properties of AlSi10Mg alloy fabricated by selective laser melting. Mater Chem Phys 285:125901. https://doi.org/10.1016/j.matchemphys.2022.125901

    Article  CAS  Google Scholar 

  45. Karimi J, Kollo L, Rahmani R et al (2022) Selective laser melting of in-situ CoCrFeMnNi high entropy alloy: effect of remelting. J Manuf Process 84:55–63. https://doi.org/10.1016/j.jmapro.2022.09.056

    Article  Google Scholar 

  46. Liu B, Li BQ, Li Z (2019) Selective laser remelting of an additive layer manufacturing process on AlSi10Mg. Results Phys 12:982–988. https://doi.org/10.1016/j.rinp.2018.12.018

    Article  Google Scholar 

  47. Bayati P, Safaei K, Nematollahi M et al (2021) Toward understanding the effect of remelting on the additively manufactured NiTi. Int J Adv Manuf Technol 112:347–360. https://doi.org/10.1007/s00170-020-06378-4

    Article  Google Scholar 

  48. Song J, Tang Q, Feng Q et al (2022) Effect of remelting processes on the microstructure and mechanical behaviours of 18Ni-300 maraging steel manufactured by selective laser melting. Mater Charact 184:111648. https://doi.org/10.1016/j.matchar.2021.111648

    Article  CAS  Google Scholar 

  49. da Silva MR, Gargarella P, Gustmann T et al (2016) Laser surface remelting of a Cu–Al–Ni–Mn shape memory alloy. Mater Sci Eng A 661:61–67. https://doi.org/10.1016/j.msea.2016.03.021

    Article  CAS  Google Scholar 

  50. Yasa E, Deckers J, Kruth JP (2011) The investigation of the influence of laser re-melting on density, surface quality and microstructure of selective laser melting parts. Rapid Prototyp J 17:312–327. https://doi.org/10.1108/13552541111156450

    Article  Google Scholar 

  51. Vaithilingam J, Goodridge RD, Hague RJM et al (2016) The effect of laser remelting on the surface chemistry of Ti6al4V components fabricated by selective laser melting. J Mater Process Technol 232:1–8. https://doi.org/10.1016/j.jmatprotec.2016.01.022

    Article  CAS  Google Scholar 

  52. Thijs L, Kempen K, Kruth JP, Van Humbeeck J (2013) Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder. Acta Mater 61:1809–1819. https://doi.org/10.1016/j.actamat.2012.11.052

    Article  CAS  Google Scholar 

  53. Hasanabadi M, Keshavarzkermai A, Asgari H et al (2022) In-situ microstructure control by laser post-exposure treatment during laser powder-bed fusion. SSRN Electron J 4:100110. https://doi.org/10.2139/ssrn.4231789

    Article  Google Scholar 

  54. Chmielewska A, Wysocki BA, Gadalińska E et al (2022) Laser powder bed fusion (LPBF) of NiTi alloy using elemental powders: the influence of remelting on printability and microstructure. Rapid Prototyp J 28:1845–1868. https://doi.org/10.1108/RPJ-08-2021-0216

    Article  Google Scholar 

  55. Cava RD, Bolfarini C, Kiminami CS et al (2015) Spray forming of Cu-11.85Al-3.2Ni-3Mn (wt.%) shape memory alloy. J Alloys Compd 615:S602–S606. https://doi.org/10.1016/j.jallcom.2013.11.166

    Article  CAS  Google Scholar 

  56. Gabrysiak K, Gustmann T, Freudenberger J et al (2021) Development and characterization of a metastable Al–Mn–Ce alloy produced by laser powder bed fusion. Addit Manuf Lett 1:100017. https://doi.org/10.1016/j.addlet.2021.100017

    Article  Google Scholar 

  57. Hariharan A, Goldberg P, Gustmann T et al (2022) Designing the microstructural constituents of an additively manufactured near β Ti alloy for an enhanced mechanical and corrosion response. Mater Des 217:110618. https://doi.org/10.1016/j.matdes.2022.110618

    Article  CAS  Google Scholar 

  58. Siddique S, Imran M, Wycisk E et al (2015) Influence of process-induced microstructure and imperfections on mechanical properties of AlSi12 processed by selective laser melting. J Mater Process Technol 221:205–213. https://doi.org/10.1016/j.jmatprotec.2015.02.023

    Article  CAS  Google Scholar 

  59. Bedmar J, de la Pezuela J, Riquelme A et al (2022) Impact of remelting in the microstructure and corrosion properties of the Ti6Al4V fabricated by selective laser melting. Coatings. https://doi.org/10.3390/coatings12020284

    Article  Google Scholar 

  60. Murkute P, Pasebani S, Isgor OB (2019) Production of corrosion-resistant 316L stainless steel clads on carbon steel using powder bed fusion-selective laser melting. J Mater Process Technol 273:116243. https://doi.org/10.1016/j.jmatprotec.2019.05.024

    Article  CAS  Google Scholar 

  61. Xie J-X, Liu J-L, Huang H-Y (2015) Structure design of high-performance Cu-based shape memory alloys. Rare Met 34:607–624. https://doi.org/10.1007/s12598-015-0557-7

    Article  CAS  Google Scholar 

  62. Raghavan N, Simunovic S, Dehoff R et al (2017) Localized melt-scan strategy for site specific control of grain size and primary dendrite arm spacing in electron beam additive manufacturing. Acta Mater 140:375–387. https://doi.org/10.1016/j.actamat.2017.08.038

    Article  CAS  Google Scholar 

  63. Babacan N, Ma J, Turkbas OS et al (2018) The effects of cold rolling and the subsequent heat treatments on the shape memory and the superelasticity characteristics of Cu73Al16Mn11 shape memory alloy. Smart Mater Struct 27:015028. https://doi.org/10.1088/1361-665X/aa9cc5

    Article  Google Scholar 

  64. La Roca PM, Isola LM, Sobrero CE et al (2015) Grain size effect on the thermal-induced martensitic transformation in polycrystalline Cu-based shape memory alloys. Mater Today Proc 2:S743–S746. https://doi.org/10.1016/j.matpr.2015.07.389

    Article  Google Scholar 

  65. Ferretto I, Borzì A, Kim D et al (2022) Control of microstructure and shape memory properties of a Fe–Mn–Si-based shape memory alloy during laser powder bed fusion. Addit Manuf Lett 3:100091. https://doi.org/10.1016/j.addlet.2022.100091

    Article  Google Scholar 

  66. Jung HY, Peter NJ, Gärtner E et al (2020) Bulk nanostructured AlCoCrFeMnNi chemically complex alloy synthesized by laser-powder bed fusion. Addit Manuf 35:101337. https://doi.org/10.1016/j.addma.2020.101337

    Article  CAS  Google Scholar 

  67. Laitinen V, Saren A, Sozinov A, Ullakko K (2022) Giant 5.8% magnetic-field-induced strain in additive manufactured Ni–Mn–Ga magnetic shape memory alloy. Scr Mater 208:114324. https://doi.org/10.1016/j.scriptamat.2021.114324

    Article  CAS  Google Scholar 

  68. Mallik US, Sampath V (2008) Influence of aluminum and manganese concentration on the shape memory characteristics of Cu–Al–Mn shape memory alloys. J Alloys Compd 459:142–147. https://doi.org/10.1016/j.jallcom.2007.04.254

    Article  CAS  Google Scholar 

  69. Morris MA, Lipe T (2014) Microstructural influence of Mn additions on thermoelastic and pseudoelastic properties of Cu–Al–Ni alloys. Acta Metall 42:1583–1594. https://doi.org/10.1016/0956-7151(94)90368-9

    Article  Google Scholar 

  70. Sutou Y, Omori T, Kainuma R, Ishida K (2013) Grain size dependence of pseudoelasticity in polycrystalline Cu–Al–Mn-based shape memory sheets. Acta Mater 61:3842–3850. https://doi.org/10.1016/j.actamat.2013.03.022

    Article  CAS  Google Scholar 

  71. Liu J, Yan W, Li M (2020) Tension-compression asymmetry of superelasticity in unidirectionally solidified Cu–Al–Mn shape memory alloy. J Mater Eng Perform 29:289–295. https://doi.org/10.1007/s11665-020-04588-1

    Article  CAS  Google Scholar 

  72. Zhuo L, Song B, Li R et al (2020) Effect of element evaporation on the microstructure and properties of CuZnAl shape memory alloys prepared by selective laser melting. Opt Laser Technol 127:106164. https://doi.org/10.1016/j.optlastec.2020.106164

    Article  CAS  Google Scholar 

Download references

Acknowledgments

N. Babacan gratefully appreciates the support from the Alexander von Humboldt (AvH) Foundation. S. Pilz gratefully acknowledges the financial support from the German Research Foundation (DFG) within the project GE 1106/12-2 no. 419952351. Furthermore, the authors would like to thank K. Neufeld, N. Geißler, B. Bartusch, R. Keller, H. Bußkamp, and A. Voß for their technical support.

Author information

Authors and Affiliations

Authors

Contributions

NB participated in the Conceptualization, Methodology, Investigation, Visualization, Writing of the original draft, and Writing, reviewing, & editing of the manuscript. SP participated in the Investigation, Methodology, and Writing, reviewing, & editing of the manuscript. JH contributed to Resources and Writing, reviewing, & editing of the manuscript. TG participated in the Conceptualization, Methodology, Investigation, Visualization, Writing of the original draft, and Writing, reviewing, & editing of the manuscript.

Corresponding authors

Correspondence to N. Babacan or T. Gustmann.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is an invited submission to Shape Memory and Superelasticity selected from presentations at the 12th European Symposium on Martensitic Transformations (ESOMAT 2022) held September 5–9, 2022 at Hacettepe University, Beytepe Campus, Ankara, Turkey and has been expanded from the original presentation. The issue was organized by Prof. Dr. Benat Koҫkar, Hacettepe University.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babacan, N., Pilz, S., Hufenbach, J. et al. Effects of Remelting on the Properties of a Superelastic Cu–Al–Mn Shape Memory Alloy Fabricated by Laser Powder Bed Fusion. Shap. Mem. Superelasticity 9, 447–459 (2023). https://doi.org/10.1007/s40830-023-00454-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40830-023-00454-w

Keywords

Navigation