Skip to main content

Advertisement

Log in

Roughness Analysis of Powder-Bed Fused Nickel–Titanium Surfaces with Chemical Etching Enhancement by a Safe Aqueous Fluoride Solution

  • TECHNICAL ARTICLE
  • Published:
Shape Memory and Superelasticity Aims and scope Submit manuscript

Abstract

Surface treatments for metal additive manufacturing have been increasingly explored to remedy undesired high surface roughness in as-printed components, which can hinder intended performance. Chemical etching is a simple method of improving surface quality in mechanically inaccessible, internal, delicate, or otherwise complex regions in such parts. In this work, the chemical etching effectiveness of the sodium fluoride and ammonium persulfate solution, known as Multi-Etch, was explored on printed nickel–titanium shape memory alloy surfaces at various exposure temperatures and times. Titanium-containing alloys often require solutions of extremely hazardous hydrofluoric acid (HF), which prompts specialized safety infrastructure; in contrast, the etchant herein is a substantially safer titanium etchant alternative. Nickel–titanium parts were generated via laser powder-bed fusion (LPBF) with geometries consisting of exterior surfaces, unsupported overhangs, and internal channels. Surface morphologies were investigated with scanning electron microscopy and optical surface profilometers. A particle size analysis of partially fused particles on as-printed surfaces was performed. Various areal surface texture parameters were considered to properly compare the as-printed and etched surfaces, of which the density of peaks (Spd), peak curvature (Spc), slope (Sdq), and developed interfacial area ratio (Sdr) were drastically reduced. An effective reduction of surface roughness, without detrimental loss in mass and spatial dimensions, was developed by etching at temperatures ranging from 40 to 60 °C for at least one hour. Metallurgical inclusions and melt track borders were preferentially etched at lower temperatures. The etching treatment herein represents an effective process for improving the surface quality of powder-bed fused nickel–titanium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Lagoudas DC (2008) Shape memory alloys: modeling and engineering applications, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-0-387-47685-8

    Book  Google Scholar 

  2. Elahinia M, Shayesteh Moghaddam N, Taheri Andani M, Amerinatanzi A, Bimber BA, Hamilton RF (2016) Fabrication of NiTi through additive manufacturing: a review. Progress Mater Sci 83:630–663. https://doi.org/10.1016/j.pmatsci.2016.08.001

    Article  CAS  Google Scholar 

  3. Ma J, Franco B, Tapia G, Karayagiz K, Johnson L, Liu J, Arroyave R, Karaman I, Elwany A (2017) Spatial control of functional response in 4D-printed active metallic structures. Sci Rep 7:1–8. https://doi.org/10.1038/srep46707

    Article  Google Scholar 

  4. Zhang B, Seede R, Xue L, Atli KC, Zhang C, Whitt A, Karaman I, Arroyave R, Elwany A (2021) An efficient framework for printability assessment in Laser Powder Bed Fusion metal additive manufacturing. Add Manufact 46:102018. https://doi.org/10.1016/j.addma.2021.102018

    Article  CAS  Google Scholar 

  5. Alagha AN, Hussain S, Zaki W (2021) Additive manufacturing of shape memory alloys: A review with emphasis on powder bed systems. Mater Design 20:109654. https://doi.org/10.1016/j.matdes.2021.109654

    Article  CAS  Google Scholar 

  6. Chen W, Yang Q, Huang S, Huang S, Kruzic JJ, Li X (2021) Laser power modulated microstructure evolution, phase transformation and mechanical properties in NiTi fabricated by laser powder bed fusion. J Alloys Comp 861:157959. https://doi.org/10.1016/j.jallcom.2020.157959

    Article  CAS  Google Scholar 

  7. Xue L, Atli KC, Picak S, Zhang C, Zhang B, Elwany A, Arroyave R, Karaman I (2021) Controlling martensitic transformation characteristics in defect-free NiTi shape memory alloys fabricated using laser powder bed fusion and a process optimization framework. Acta Materialia 215:117017. https://doi.org/10.1016/j.actamat.2021.117017

    Article  CAS  Google Scholar 

  8. Franco BE, Ma J, Loveall B, Tapia GA, Karayagiz K, Liu J, Elwany A, Arroyave R, Karaman I (2017) A sensory material approach for reducing variability in additively manufactured metal parts. Sci Rep 7(1):1–12

    Article  Google Scholar 

  9. Mahmoudi M, Tapia G, Franco B, Ma J, Arroyave R, Karaman I, Elwany A (2018) On the printability and transformation behavior of nickel-titanium shape memory alloys fabricated using laser powder-bed fusion additive manufacturing. J Manuf Process 35:672–680

    Article  Google Scholar 

  10. Hartl DJ, Frank GJ, Baur JW (2017) Embedded magnetohydrodynamic liquid metal thermal transport: validated analysis and design optimization. J Intell Mater Syst Struct 28(7):862–877. https://doi.org/10.1177/1045389X16657429

    Article  CAS  Google Scholar 

  11. Shayesteh Moghaddam N, Saedi S, Amerinatanzi A, Hinojos A, Ramazani A, Kundin J, Mills MJ, Karaca H, Elahinia M (2019) Achieving superelasticity in additively manufactured NiTi in compression without post-process heat treatment. Sci Rep 9(1):1–11. https://doi.org/10.1038/s41598-018-36641-4

    Article  CAS  Google Scholar 

  12. Safaei K, Nematollahi M, Bayati P, Dabbaghi H, Benafan O, Elahinia M (2021) Torsional behavior and microstructure characterization of additively manufactured NiTi shape memory alloy tubes. Eng Struct 226:111383. https://doi.org/10.1016/j.engstruct.2020.111383

    Article  Google Scholar 

  13. L. Mingear, B. K. Allen, J. J. Zamarripa, D. J. Hartl, Internal Liquid Metal Channels to Enable High Power Additively Manufactured SMA Actuators, International Conference on Shape Memory and Superelastic Technologies, SMST 2022 (2022) 14–15doi:https://doi.org/10.31399/asm.cp.smst2022p0014

  14. Jahadakbar A, Moghaddam NS, Amerinatanzi A, Dean D, Karaca HE, Elahinia M (2016) Finite element simulation and additive manufacturing of stiffness-matched NiTi fixation hardware for mandibular reconstruction surgery. Bioengineering 3(4):1–20. https://doi.org/10.3390/Bioengineering3040036

    Article  Google Scholar 

  15. Mingear J, Zhang B, Hartl D, Elwany A (2019) Effect of process parameters and electropolishing on the surface roughness of interior channels in additively manufactured nickel titanium shape memory alloy actuators. Additive Manufacturing 27:565–575. https://doi.org/10.1016/j.addma.2019.03.027

    Article  CAS  Google Scholar 

  16. Zhao C, Qu N, Tang X (2021) Confined electrochemical finishing of additive-manufactured internal holes with coaxial electrolyte flushing. J Electrochem Soc 168(11):113504. https://doi.org/10.1149/1945-7111/ac3782

    Article  CAS  Google Scholar 

  17. Narasimharaju SR, Liu W, Zeng W, See TL, Scott P, Jiang XJ, Lou S (2021) Surface texture characterization of metal selective laser melted part with varying surface inclinations. J Tribol 143(5):1–17. https://doi.org/10.1115/1.4050455

    Article  CAS  Google Scholar 

  18. Maleki E, Bagherifard S, Bandini M, Guagliano M (2021) Surface post-treatments for metal additive manufacturing: progress, challenges, and opportunities. Add Manufact. https://doi.org/10.1016/j.addma.2020.101619

    Article  Google Scholar 

  19. Patel S, Rogalsky A, Vlasea M (2020) Towards understanding side-skin surface characteristics in laser powder bed fusion. J Mater Res 35(15):2055–2064. https://doi.org/10.1557/jmr.2020.125

    Article  CAS  Google Scholar 

  20. Rott S, Ladewig A, Friedberger K, Casper J, Full M, Schleifenbaum JH (2020) Surface roughness in laser powder bed fusion–interdependency of surface orientation and laser incidence. Add Manufact 36:101437. https://doi.org/10.1016/j.addma.2020.101437

    Article  Google Scholar 

  21. Snyder JC, Thole KA (2020) Understanding laser powder bed fusion surface roughness. J Manufact Sci Eng. https://doi.org/10.1115/1.4046504

    Article  Google Scholar 

  22. Khorasani M, Ghasemi AH, Awan US, Hadavi E, Leary M, Brandt M, Littlefair G, O’Neil W, Gibson I (2020) A study on surface morphology and tension in laser powder bed fusion of Ti–6Al–4V. Int J Adv Manuf Technol 111(9–10):2891–2909. https://doi.org/10.1007/s00170-020-06221-w

    Article  Google Scholar 

  23. Ali U, Fayazfar H, Ahmed F, Toyserkani E (2020) Internal surface roughness enhancement of parts made by laser powder-bed fusion additive manufacturing. Vacuum 177:109314. https://doi.org/10.1016/j.vacuum.2020.109314

    Article  CAS  Google Scholar 

  24. W. Eidt, E. P. Tatman, J. McCarther, J. Kastner, S. Gunther, J. Gockel, (2019)Surface roughness characterization in laser powder bed fusion additive manufacturing, Solid Freeform Fabrication 2019: Proceedings of the 30th Annual International Solid Freeform Fabrication Symposium-An Additive Manufacturing Conference, SFF. 2019: 2165–2176.

  25. Calignano F (2018) Investigation of the accuracy and roughness in the laser powder bed fusion process. Virtual and Phys Prototyping 13(2):97–104. https://doi.org/10.1080/17452759.2018.1426368

    Article  Google Scholar 

  26. Fox JC, Moylan SP, Lane BM (2016) Effect of process parameters on the surface roughness of overhanging structures in laser powder bed fusion additive manufacturing. Procedia CIRP 45:131–134. https://doi.org/10.1016/j.procir.2016.02.347

    Article  Google Scholar 

  27. Triantaphyllou A, Giusca CL, Macaulay GD, Roerig F, Hoebel M, Leach RK, Tomita B, Milne KA (2015) Surface texture measurement for additive manufacturing. Surf Topograph Metrol Propert. https://doi.org/10.1088/2051-672X/3/2/024002

    Article  Google Scholar 

  28. Strano G, Hao L, Everson RM, Evans KE (2013) Surface roughness analysis, modelling and prediction in selective laser melting. J Mater Process Technol 213(4):589–597. https://doi.org/10.1016/j.jmatprotec.2012.11.011

    Article  CAS  Google Scholar 

  29. Karlsson J, Snis A, Engqvist H, Lausmaa J (2013) Characterization and comparison of materials produced by Electron Beam Melting (EBM) of two different Ti-6Al-4V powder fractions. J Mater Process Technol 213(12):2109–2118. https://doi.org/10.1016/j.jmatprotec.2013.06.010

    Article  CAS  Google Scholar 

  30. Spierings AB, Herres N, Levy G (2011) Influence of the particle size distribution on surface quality and mechanical properties in AM steel parts. Rapid Prototyping Journal 17(3):195–202. https://doi.org/10.1108/13552541111124770

    Article  Google Scholar 

  31. Chembath M, Balaraju JN, Sujata M (2016) Effect of anodization and annealing on corrosion and biocompatibility of NiTi alloy. Surf Coat Technol 302:302–309. https://doi.org/10.1016/j.surfcoat.2016.06.031

    Article  CAS  Google Scholar 

  32. Ruperez E, Manero JM, Bravo-Gonzalez LA, Espinar E, Gil FJ (2016) Development of biomimetic NiTi alloy: influence of thermo-chemical treatment on the physical, mechanical and biological behavior. Materials. https://doi.org/10.3390/ma9060402

    Article  Google Scholar 

  33. Gockel J, Sheridan L, Koerper B, Whip B (2019) The influence of additive manufacturing processing parameters on surface roughness and fatigue life. Int J Fatigue 124:380–388

    Article  CAS  Google Scholar 

  34. J. A. Slotwinski, 2014 Additive manufacturing: Overview and NDE challenges, in: AIP Conference Proceedings, Vol. 1581, pp. 1173–1177.

  35. de Formanoir C, Suard M, Dendievel R, Martin G, Godet S (2016) Improving the mechanical efficiency of electron beam melted titanium lattice structures by chemical etching. Addit Manuf 11:71–76. https://doi.org/10.1016/j.addma.2016.05.001

    Article  CAS  Google Scholar 

  36. Ahmadi SM, Kumar R, Borisov EV, Petrov R, Leeflang S, Li Y, N. Tu¨mer, R. Huizenga, C. Ayas, A. A. Zadpoor, V. A. Popovich. (2019) From microstructural design to surface engineering: A tailored approach for improving fatigue life of additively manufactured meta-biomaterials. Acta Biomaterialia. 83:153–166. https://doi.org/10.1016/j.actbio.2018.10.043

    Article  CAS  Google Scholar 

  37. Pyka G, Burakowski A, Kerckhofs G, Moesen M, Van Bael S, Schrooten J, Wevers M (2012) Surface modification of Ti6Al4V open porous structures produced by additive manufacturing. Adv Eng Mater 14(6):363–370. https://doi.org/10.1002/adem.201100344

    Article  CAS  Google Scholar 

  38. Tyagi P, Goulet T, Riso C, Stephenson R, Chuenprateep N, Schlitzer J, Benton C, Garcia-Moreno F (2019) Reducing the roughness of internal surface of an additive manufacturing produced 316 steel component by chempolishing and electropolishing. Additive Manufacturing 25:32–38. https://doi.org/10.1016/j.addma.2018.11.001

    Article  CAS  Google Scholar 

  39. Scherillo F (2019) Chemical surface finishing of AlSi10Mg components made by additive manufacturing. Manufact Lett 19:5–9. https://doi.org/10.1016/j.mfglet.2018.12.002

    Article  Google Scholar 

  40. Straumanis ME, Chen PC (1951) The mechanism and rate of dissolution of titanium in hydrofluoric acid. J Electrochem Soc 98(6):234–240. https://doi.org/10.1149/1.2778138

    Article  CAS  Google Scholar 

  41. Straumanis ME, Gill CB (1954) The rate of dissolution and the passivation of titanium in acids with ammonium fluoride added. J Electrochem Soc 101(1):10. https://doi.org/10.1149/1.2781197

    Article  CAS  Google Scholar 

  42. Zhao H, Van Humbeeck J, De Scheerder I (2001) Surface conditioning of nickel-titanium alloy stents for improving biocompatibility. Surf Eng 17(6):451–458. https://doi.org/10.1179/026708401322911356

    Article  CAS  Google Scholar 

  43. Sigma-Aldrich Inc., Hydrofluoric Acid Safety Data Sheet, Tech. rep., Sigma-Aldrich Inc., ST. LOUIS MO 63103 (6 2020)

  44. United Nations, Globally Harmonized System of Classification and Labelling of Chemicals, Tech. rep. (9 2021).

  45. A. K. Labak, Alternatives to Hydrofluoric Acid Etching At Wyman Gordon Company, Ph.D. thesis, WORCESTER POLYTECHNIC INSTITUTE (2010).

  46. Amrutha MS, Fasmin F, Ramanathan S (2017) Effect of HF concentration on anodic dissolution of titanium. J Electrochem Soc 164(4):H188–H197. https://doi.org/10.1149/2.0501704jes

    Article  CAS  Google Scholar 

  47. Boere G (1995) Influence of fluoride on titanium in an acidic environment measured by polarization resistance technique. J Appl Biomater 6(4):283–288. https://doi.org/10.1002/jab.770060409

    Article  CAS  Google Scholar 

  48. Lindholm-Sethson B, Ardlin BI (2008) Effects of pH and fluoride concentration on the corrosion of titanium. J Biomed Mater Res - Part A 86(1):149–159. https://doi.org/10.1002/jbm.a.31415

    Article  CAS  Google Scholar 

  49. Jia F, Zhou L, Li S, Lin X, Wen B, Lai C, Ding X (2014) Phosphoric acid and sodium fluoride: a novel etching combination on titanium. Biomed Mater 9(3):035004. https://doi.org/10.1088/1748-6041/9/3/035004

    Article  CAS  Google Scholar 

  50. Perinetti G, Contardo L, Ceschi M, Antoniolli F, Franchi L, Baccetti T, Di Lenarda R (2012) Surface corrosion and fracture resistance of two nickel-titanium-based archwires induced by fluoride, pH, and thermocycling. An in vitro comparative study. European J Orthodontics 34(1):1–9. https://doi.org/10.1093/ejo/cjq093

    Article  CAS  Google Scholar 

  51. Yokoyama K, Kaneko K, Moriyama K, Asaoka K, Sakai J, Nagumo M (2003) Hydrogen embrittlement of Ni–Ti superelastic alloy in fluoride solution. J Biomed Mater Res 65A(2):182–187. https://doi.org/10.1002/jbm.a.10457

    Article  CAS  Google Scholar 

  52. Yokoyama K, Kaneko K, Ogawa T, Moriyama K, Asaoka K, Sakai J (2005) Hydrogen embrittlement of work-hardened Ni–Ti alloy in fluoride solutions. Biomaterials 26(1):101–108. https://doi.org/10.1016/j.biomaterials.2004.02.009

    Article  CAS  Google Scholar 

  53. Takemoto S, Hattori M, Yoshinari M, Kawada E, Oda Y (2005) Corrosion behavior and surface characterization of titanium in solution containing fluoride and albumin. Biomaterials 26(8):829–837. https://doi.org/10.1016/j.biomaterials.2004.03.025

    Article  CAS  Google Scholar 

  54. Li X, Wang J, E. h. Han, W. Ke, (2007) Influence of fluoride and chloride on corrosion behavior of NiTi orthodontic wires. Acta Biomaterialia 3(5):807–815. https://doi.org/10.1016/j.actbio.2007.02.002

    Article  CAS  Google Scholar 

  55. Kassab EJ, Gomes JP (2013) Assessment of nickel titanium and beta titanium corrosion resistance behavior in fluoride and chloride environments. Angle Orthod 83(5):864–869. https://doi.org/10.2319/091712-740.1

    Article  Google Scholar 

  56. Katic V, Curkovic L, Ujevic Bosnjak M, Peros K, Mandic D, Spalj S (2017) Effect of pH, fluoride and hydrofluoric acid concentration on ion release from niti wires with various coatings. Dental Mater J 36(2):149–156. https://doi.org/10.4012/dmj.2016-169

    Article  CAS  Google Scholar 

  57. Ogawa CM, Faltin K, Maeda FA, Ortolani CLF, Guare RO, Cardoso CAB, Costa ALF (2020) In vivo assessment of the corrosion of nickel-titanium orthodontic archwires by using scanning electron microscopy and atomic force microscopy. Microscopy Res Tech 83(8):928–936. https://doi.org/10.1002/jemt.23486

    Article  CAS  Google Scholar 

  58. C. Boothe, S. Boothe, History of Multi-Etch (2021). URL https://www.multietch.com/ourhistory

  59. Multi-Etch LLC, Safety Data Sheet Multi-Etch (Liquid), Tech. rep., Multi-Etch, LLC, Clarkdale, AZ 86324 (8 2020). URL https://www.multietch.com/safety

  60. C. Boothe, S. Boothe, Etch Rates (2021). URL https://www.multietch.com/etch-rates

  61. Deng C, Jiang L, Qian L (2021) Synergistic Effect of F - and Persulfate in Efficient Titanium Alloy Chemical Mechanical Polishing. ECS Journal of Solid State Science and Technology. 10(11):114003. https://doi.org/10.1149/2162-8777/ac305a

    Article  CAS  Google Scholar 

  62. Ho A, Zhao H, Fellowes JW, Martina F, Davis AE, Prangnell PB (2019) On the origin of microstructural banding in Ti–6Al4V wire-arc based high deposition rate additive manufacturing. Acta Mater 166:306–323. https://doi.org/10.1016/J.ACTAMAT.2018.12.038

    Article  CAS  Google Scholar 

  63. de Araujo AP, Pauly S, Batalha RL, Coury FG, Kiminami CS, Uhlenwinkel V, Gargarella P (2021) Additive manufacturing of a quasicrystal-forming Al95Fe2Cr2Ti1 alloy with remarkable high-temperature strength and ductility. Additive Manufacturing. 41:101960. https://doi.org/10.1016/J.ADDMA.2021.101960

    Article  Google Scholar 

  64. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez J-Y, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682. https://doi.org/10.1038/nmeth.2019

    Article  CAS  Google Scholar 

  65. Folk RL, Ward WC (1957) Brazos River bar [Texas]; a study in the significance of grain size parameters. J Sediment Res 27(1):3–26. https://doi.org/10.1306/74D70646-2B21-11D7-8648000102C1865D

    Article  Google Scholar 

  66. Etzler FM, Sanderson MS (1995) Particle Size Analysis: A comparative study of various methods. Part Part Syst Charact 12(5):217–224. https://doi.org/10.1002/ppsc.19950120503

    Article  CAS  Google Scholar 

  67. T. Allen, Particle size measurement, Springer, 2013.

  68. Celik IB (2009) The effects of particle size distribution and surface area upon cement strength development. Powder Technol 188(3):272–276. https://doi.org/10.1016/j.powtec.2008.05.007

    Article  CAS  Google Scholar 

  69. Mingear J, Farrell Z, Hartl D, Tabor C (2021) Gallium-indium nanoparticles as phase change material additives for tunable thermal fluids. Nanoscale. https://doi.org/10.1039/d0nr06526a

    Article  Google Scholar 

  70. Rosin P (1933) Laws governing the fineness of powdered coal. J Institute Fuel 7:29–36

    CAS  Google Scholar 

  71. Tarja´n G (1974) A contribution to particle size distribution functions. Powder Technol 10(1–2):73–77. https://doi.org/10.1016/0032-5910(74)85034-5

    Article  Google Scholar 

  72. Ncibi MC (2008) Applicability of some statistical tools to predict optimum adsorption isotherm after linear and non-linear regression analysis. J Hazard Mater 153(1–2):207–212. https://doi.org/10.1016/J.JHAZMAT.2007.08.038

    Article  CAS  Google Scholar 

  73. OriginLab Corporation, OriginPro: Compare Datasets and Fit Parameters (2022). URL https://www.originlab.com/fileExchange/details.aspx?fid=302

  74. Gusarov AV, Smurov I (2010) Modeling the interaction of laser radiation with powder bed at selective laser melting. Phys Procedia 5:381–394. https://doi.org/10.1016/J.PHPRO.2010.08.065

    Article  CAS  Google Scholar 

  75. Rombouts M, Froyen L, Gusarov AV, Bentefour EH, Glorieux C (2005) Photopyroelectric measurement of thermal conductivity of metallic powders. J Appl Phys. https://doi.org/10.1063/11832740

    Article  Google Scholar 

  76. J. Mingear, Jacob Mingear YouTube Channel (2019). URL https://www.youtube.com/channel/UCUM5BDOmutkG4XA0_fp2gGA

  77. Coda A, Zilio S, Norwich D, Sczerzenie F (2012) Characterization of inclusions in VIM/VAR NiTi alloys. J Mater Eng Perform 21(12):2572–2577. https://doi.org/10.1007/s11665-012-0366-1

    Article  CAS  Google Scholar 

  78. Coda A, Cadelli A, Zanella M, Fumagalli L (2018) Straightforward downsizing of Inclusions in NiTi Alloys: a new generation of SMA wires with outstanding fatigue life. Shape Memory Superelasticity 4(1):41–47. https://doi.org/10.1007/s40830-018-0159-y

    Article  Google Scholar 

  79. ISO, Geometrical product specifications (GPS)—Surface texture: areal—Part 2: Terms, definitions and surface texture parameters, Tech. rep., ISO (2012)

  80. ISO, Geometrical Product Specifications (GPS)—surface texture: Profile method — Rules and procedures for the assessment of surface texture—technical Corrigendum 1, Tech. rep., ISO (1998)

  81. Panda S, Panzade A, Sarangi M, Roy Chowdhury SK (2017) Spectral approach on multiscale roughness characterization of nominally rough surfaces. J Tribol 139(3):1–10. https://doi.org/10.1115/1.4034215

    Article  Google Scholar 

  82. Nagalingam AP, Vohra MS, Kapur P, Yeo SH (2021) Effect of cut-off, evaluation length, and measurement area in profile and areal surface texture characterization of as-built metal additive manufactured components. Appl Sci (Switzerland). https://doi.org/10.3390/app11115089

    Article  Google Scholar 

  83. Dong WP, Sullivan PJ, Stout KJ (1992) Comprehensive study of parameters for characterizing three-dimensional surface topography I: some inherent properties of parameter variation. Wear 159(2):161–171. https://doi.org/10.1016/0043-1648(92)90299-N

    Article  Google Scholar 

  84. Dong WP, Sullivan PJ, Stout KJ (1994) Comprehensive study of parameters for characterising three-dimensional surface topography. IV: Parameters for characterising spatial and hybrid properties. Wear 178(1–2):45–60. https://doi.org/10.1016/0043-1648(94)90128-7

    Article  CAS  Google Scholar 

  85. Whitehouse DJ (1982) The parameter rash is there a cure? Wear 83(1):75–78. https://doi.org/10.1016/0043-1648(82)90341-6

    Article  Google Scholar 

  86. Dong WP, Sullivan PJ, Stout KJ (1994) Comprehensive study of parameters for characterising three—dimensional surface topography. III: parameters for characterising amplitude and some functional properties. Wear 178(1–2):29–43. https://doi.org/10.1016/0043-1648(94)90127-9

    Article  CAS  Google Scholar 

  87. Croll SG (2020) Surface roughness profile and its effect on coating adhesion and corrosion protection: a review. Progress Org Coat 148:105847. https://doi.org/10.1016/J.PORGCOAT.2020.105847

    Article  CAS  Google Scholar 

  88. I. I. Kudish, D. K. Cohen, B. Vyletel, Surface roughness and contact connectivity, Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology 228 (7) (2014) 735–744. https://doi.org/10.1177/1350650114528169

  89. Cohen DK (2017) If you need less sliding friction, should you make the surface rougher or smoother? Quality 56(January):28–32

    Google Scholar 

  90. J. B. Taylor, A. L. Carrano, S. G. Kandlikar, Characterization of the effect of surface roughness and texture on fluid flow Past, present, and future, Proceedings of the 3rd International Conference on Microchannels and Minichannels, 2005 PART A (2005) 11–18. https://doi.org/10.1016/j.ijthermalsci.2006.01.004.

Download references

Acknowledgments

This work is supported in part by the US Air Force Office of Scientific Research under grant FA955016-1-0087 (Avian-Inspired Multifunctional Morphing Vehicles) monitored by Dr. B. L. Lee. The authors express gratitude once again to Dr. Satish Bukkapatnam (Industrial and Systems Engineering, TAMU) for use of their Zygo optical profilometer as well as to the Microscopy Imaging Center (SCR 022128) at TAMU for Tescan Vega SEM use. Mingear thanks Chris & Sandy Boothe for an interview in Jan 2021; these inventors of Multi-Etch® have since added a section for nickel–titanium on their website.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darren Hartl.

Ethics declarations

Conflict of interest

The authors declare that this research was conducted in the absence of any commercial/financial relationships that would create a conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mingear, J., Zhang, B., Elwany, A. et al. Roughness Analysis of Powder-Bed Fused Nickel–Titanium Surfaces with Chemical Etching Enhancement by a Safe Aqueous Fluoride Solution. Shap. Mem. Superelasticity 9, 504–519 (2023). https://doi.org/10.1007/s40830-023-00437-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40830-023-00437-x

Keywords

Navigation