Skip to main content

Advertisement

Log in

Sinter-Based Additive Manufacturing of Ni–Ti Shape Memory Alloy

  • TECHNICAL ARTICLE
  • Published:
Shape Memory and Superelasticity Aims and scope Submit manuscript

Abstract

Additive manufacturing (AM) of Shape Memory Alloys (SMA) is an emerging technology that can open the route for numerous new applications in the fields of actuation, sensing, energy harvesting, and heat management. Currently, most AM processes of SMA rely on liquid-state methods that locally melt the metallic feedstock. Recent advances in sinter-based AM have the potential to facilitate the control over the final microstructure and properties of the printed SMA. This article presents the production and characterization of Ni–Ti SMA using sinter-based Lithography-based Metal Manufacturing (LMM). We report a recoverable strain of up to 2.3% under compression, while the amount of irrecoverable plastic strain is smaller than 0.05% up to a stress of 800 MPa. The high strength with moderate recoverable strain is attributed to the carbon content that promotes the formation of Ti-carbides during high temperature sintering. We analyze the origin and role of the carbides in the thermo-mechanical response of the AM Ni–Ti and argue that this strengthening mechanism calls for further studies and can be beneficial for certain applications. Our results indicate that LMM is a feasible and promising method to produce net-shaped SMA and encourage future studies of other sinter-based AM processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Data available upon request is approved.

References

  1. Otsuka K, Wayman CM (1999) Shape memory materials. Cambridge University Press, Cambridge

    Google Scholar 

  2. Otsuka K, Ren X (2005) Physical metallurgy of Ti–Ni-based shape memory alloys. Prog Mater Sci 50:511–678. https://doi.org/10.1016/j.pmatsci.2004.10.001

    Article  CAS  Google Scholar 

  3. Britz R, Motzki P, Seelecke S (2019) Scalable Bi-directional SMA-based rotational actuator. Actuators. https://doi.org/10.3390/act8030060

    Article  Google Scholar 

  4. Huber JE, Fleck NA, Ashby MF (1997) The selection of mechanical actuators based on performance indices. Proc R Soc Lond Ser Math Phys Eng Sci 453:2185–2205. https://doi.org/10.1098/rspa.1997.0117

    Article  Google Scholar 

  5. Haghdoust P, Conte AL, Cinquemani S, Lecis N (2018) Investigation of shape memory alloy embedded wind turbine blades for the passive control of vibrations. Smart Mater Struct 27:105012. https://doi.org/10.1088/1361-665x/aad87a

    Article  CAS  Google Scholar 

  6. Petrini L, Migliavacca F (2011) Biomedical applications of shape memory alloys. J Metall 2011:501483. https://doi.org/10.1155/2011/501483

    Article  Google Scholar 

  7. Patel SK, Behera B, Swain B et al (2020) A review on NiTi alloys for biomedical applications and their biocompatibility. Mater Today Proc 33:5548–5551. https://doi.org/10.1016/j.matpr.2020.03.538

    Article  CAS  Google Scholar 

  8. Auricchio F, Boatti E, Conti M, Marconi S (2021) Chapter 19—SMA biomedical applications. In: Concilio A, Antonucci V, Auricchio F et al (eds) Shape memory alloy engineering, 2nd edn. Butterworth-Heinemann, Boston, pp 627–658

    Chapter  Google Scholar 

  9. Nematollahi M, Baghbaderani KS, Amerinatanzi A et al (2019) Application of NiTi in assistive and rehabilitation devices: a review. Bioengineering. https://doi.org/10.3390/bioengineering6020037

    Article  Google Scholar 

  10. Gheorghita V, Gümpel P, Chiru A, Strittmatter J (2014) Future applications of Ni–Ti alloys in automotive safety systems. Int J Automot Technol 15:469–474. https://doi.org/10.1007/s12239-014-0049-z

    Article  Google Scholar 

  11. Malka Y, Shilo D (2017) A fast and powerful release mechanism based on pulse heating of shape memory wires. Smart Mater Struct 26:095061. https://doi.org/10.1088/1361-665x/aa81a3

    Article  CAS  Google Scholar 

  12. Dana A, Vollach S, Shilo D (2021) Use the force: review of high-rate actuation of shape memory alloys. Actuators 10:140. https://doi.org/10.3390/act10070140

    Article  Google Scholar 

  13. Hartl DJ, Lagoudas DC (2007) Aerospace applications of shape memory alloys. Proc Inst Mech Eng G 221:535–552. https://doi.org/10.1243/09544100JAERO211

    Article  CAS  Google Scholar 

  14. Sofla AYN, Meguid SA, Tan KT, Yeo WK (2010) Shape morphing of aircraft wing: status and challenges. Mater Des 31:1284–1292. https://doi.org/10.1016/j.matdes.2009.09.011

    Article  CAS  Google Scholar 

  15. Hu K, Rabenorosoa K, Ouisse M (2021) A review of SMA-based actuators for bidirectional rotational motion: application to origami robots. Front Robot AI. https://doi.org/10.3389/frobt.2021.678486

    Article  Google Scholar 

  16. Copaci D-S, Blanco D, Martin-Clemente A, Moreno L (2020) Flexible shape memory alloy actuators for soft robotics: modelling and control. Int J Adv Robot Syst 17:1729881419886747. https://doi.org/10.1177/1729881419886747

    Article  Google Scholar 

  17. Avraham D, Faran E, Shilo D (2018) Self-propagating miniature device based on shape memory alloy. J Phys Commun 2:015015. https://doi.org/10.1088/2399-6528/aaa37f

    Article  CAS  Google Scholar 

  18. Elahinia M, Nematollahi M, Baghbaderani KS et al (2021) Chapter 6—manufacturing of shape memory alloys. In: Concilio A, Antonucci V, Auricchio F et al (eds) Shape memory alloy engineering, 2nd edn. Butterworth-Heinemann, Boston, pp 165–193

    Chapter  Google Scholar 

  19. Kaya E, Kaya İ (2019) A review on machining of NiTi shape memory alloys: the process and post process perspective. Int J Adv Manuf Technol 100:2045–2087. https://doi.org/10.1007/s00170-018-2818-8

    Article  Google Scholar 

  20. Frenzel J, Eggeler G, Quandt E et al (2018) High-performance elastocaloric materials for the engineering of bulk- and micro-cooling devices. MRS Bull 43:280–284. https://doi.org/10.1557/mrs.2018.67

    Article  CAS  Google Scholar 

  21. Kirsch S-M, Welsch F, Michaelis N et al (2018) NiTi-based elastocaloric cooling on the macroscale: from basic concepts to realization. Energy Technol 6:1567–1587. https://doi.org/10.1002/ente.201800152

    Article  Google Scholar 

  22. Bansiddhi A, Sargeant TD, Stupp SI, Dunand DC (2008) Porous NiTi for bone implants: a review. Acta Biomater 4:773–782. https://doi.org/10.1016/j.actbio.2008.02.009

    Article  CAS  Google Scholar 

  23. Kujala S, Ryhänen J, Danilov A, Tuukkanen J (2003) Effect of porosity on the osteointegration and bone ingrowth of a weight-bearing nickel–titanium bone graft substitute. Biomaterials 24:4691–4697. https://doi.org/10.1016/S0142-9612(03)00359-4

    Article  CAS  Google Scholar 

  24. Burow J, Prokofiev E, Somsen C et al (2008) Martensitic Transformations and functional stability in ultra-fine grained NiTi shape memory alloys. In: Nanomaterials by severe plastic deformation IV. Trans Tech Publications Ltd, Stafa-Zuerich, pp 852–857

  25. Prokofiev E, Burow J, Frenzel J et al (2011) Phase transformations and functional properties of NiTi alloy with ultrafine-grained structure. In: Nanomaterials by severe plastic deformation: NANOSPD5. Trans Tech Publications Ltd, Stafa-Zuerich, pp 1059–1064

  26. Oshida Y, Tominaga T (2020) Nickel–titanium materials: biomedical applications. Walter de Gruyter GmbH, Munich

    Book  Google Scholar 

  27. Elahinia MH, Hashemi M, Tabesh M, Bhaduri SB (2012) Manufacturing and processing of NiTi implants: a review. Prog Mater Sci 57:911–946. https://doi.org/10.1016/j.pmatsci.2011.11.001

    Article  CAS  Google Scholar 

  28. Dadbakhsh S, Speirs M, Kruth J-P et al (2014) Effect of SLM parameters on transformation temperatures of shape memory nickel titanium parts. Adv Eng Mater 16:1140–1146. https://doi.org/10.1002/adem.201300558

    Article  CAS  Google Scholar 

  29. Dadbakhsh S, Speirs M, Kruth J-P, Humbeeck JV (2015) Influence of SLM on shape memory and compression behaviour of NiTi scaffolds. CIRP Ann 64:209–212. https://doi.org/10.1016/j.cirp.2015.04.039

    Article  Google Scholar 

  30. Elahinia M, Moghaddam NS, Andani MT et al (2016) Fabrication of NiTi through additive manufacturing: a review. Prog Mater Sci 83:630–663. https://doi.org/10.1016/j.pmatsci.2016.08.001

    Article  CAS  Google Scholar 

  31. Hamilton RF, Bimber BA, Andani MT, Elahinia M (2017) Multi-scale shape memory effect recovery in NiTi alloys additive manufactured by selective laser melting and laser directed energy deposition. J Mater Process Technol 250:55–64. https://doi.org/10.1016/j.jmatprotec.2017.06.027

    Article  CAS  Google Scholar 

  32. Alagha AN, Hussain S, Zaki W (2021) Additive manufacturing of shape memory alloys: a review with emphasis on powder bed systems. Mater Des 204:109654. https://doi.org/10.1016/j.matdes.2021.109654

    Article  CAS  Google Scholar 

  33. Zeng Z, Cong BQ, Oliveira JP et al (2020) Wire and arc additive manufacturing of a Ni-rich NiTi shape memory alloy: microstructure and mechanical properties. Addit Manuf 32:101051. https://doi.org/10.1016/j.addma.2020.101051

    Article  CAS  Google Scholar 

  34. Attarilar S, Ebrahimi M, Djavanroodi F et al (2021) 3D printing technologies in metallic implants: a thematic review on the techniques and procedures. Int J Bioprint 7:306. https://doi.org/10.18063/ijb.v7i1.306

    Article  CAS  Google Scholar 

  35. Zuo X, Zhang W, Chen Y et al (2022) Wire-based directed energy deposition of NiTiTa shape memory alloys: microstructure, phase transformation, electrochemistry, X-ray visibility and mechanical properties. Addit Manuf 59:103115. https://doi.org/10.1016/j.addma.2022.103115

    Article  CAS  Google Scholar 

  36. Li B, Wang L, Wang B et al (2022) Electron beam freeform fabrication of NiTi shape memory alloys: crystallography, martensitic transformation, and functional response. Mater Sci Eng A 843:143135. https://doi.org/10.1016/j.msea.2022.143135

    Article  CAS  Google Scholar 

  37. Dadbakhsh S, Vrancken B, Kruth J-P et al (2016) Texture and anisotropy in selective laser melting of NiTi alloy. Mater Sci Eng A 650:225–232. https://doi.org/10.1016/j.msea.2015.10.032

    Article  CAS  Google Scholar 

  38. Bormann T, Müller B, Schinhammer M et al (2014) Microstructure of selective laser melted nickel–titanium. Mater Charact 94:189–202. https://doi.org/10.1016/j.matchar.2014.05.017

    Article  CAS  Google Scholar 

  39. Burkhardt C (2020) Beginner’s guide to 3 leading sinter-based metal additive manufacturing technologies. Int J Powder Metall 14:69–79

    Google Scholar 

  40. Tuncer N, Bose A (2020) Solid-state metal additive manufacturing: a review. JOM 72:3090–3111. https://doi.org/10.1007/s11837-020-04260-y

    Article  Google Scholar 

  41. Kumar S, Kar A (2021) A review of solid-state additive manufacturing processes. Trans Indian Natl Acad Eng 6:955–973. https://doi.org/10.1007/s41403-021-00270-7

    Article  Google Scholar 

  42. Bram M, Ahmad-Khanlou A, Heckmann A et al (2002) Powder metallurgical fabrication processes for NiTi shape memory alloy parts. Mater Sci Eng A 337:254–263. https://doi.org/10.1016/S0921-5093(02)00028-X

    Article  Google Scholar 

  43. Mentz J, Bram M, Buchkremer HP, Stöver D (2006) Improvement of mechanical properties of powder metallurgical NiTi shape memory alloys. Adv Eng Mater 8:247–252. https://doi.org/10.1002/adem.200500258

    Article  CAS  Google Scholar 

  44. Novák P, Kadlecová B, Salvetr P et al (2017) Effect of reaction atmosphere and heating rate during reactive sintering of Ni–Ti intermetallics. Procedia Eng 184:681–686. https://doi.org/10.1016/j.proeng.2017.04.139

    Article  CAS  Google Scholar 

  45. Parvizi S, Hashemi SM, Asgarinia F et al (2021) Effective parameters on the final properties of NiTi-based alloys manufactured by powder metallurgy methods: a review. Prog Mater Sci 117:100739. https://doi.org/10.1016/j.pmatsci.2020.100739

    Article  CAS  Google Scholar 

  46. Mitteramskogler G, Schwentenwein M, Seisenbacher S et al (2018) Lithographic additive manufacturing of metalbased suspensions. Metal Addit Manuf 4:131–134

    Google Scholar 

  47. Burkhardt C, Gonzalez-Guiterrez J, Hampel S et al (2018) Resource efficient production route for rare earth magnets. Steinbeis, Berlin

    Google Scholar 

  48. MetShape GmbH. https://www.metshape.com/lmm-technology

  49. Institute for Precious and Technology Metals, Pforzheim University. https://www.hs-pforzheim.de/sti

  50. Incus GmbH. https://www.incus3d.com/technology

  51. Shaw JA, Churchill CB, Iadicola MA (2008) Tips and tricks for characterizing shape memory alloy wire: part 1—differential scanning calorimetry and basic phenomena. Exp Tech 32:55–62. https://doi.org/10.1111/j.1747-1567.2008.00410.x

    Article  Google Scholar 

  52. Zhang Z, James RD, Müller S (2009) Energy barriers and hysteresis in martensitic phase transformations. Acta Mater 57:4332–4352. https://doi.org/10.1016/j.actamat.2009.05.034

    Article  CAS  Google Scholar 

  53. Frenzel J, George EP, Dlouhy A et al (2010) Influence of Ni on martensitic phase transformations in NiTi shape memory alloys. Acta Mater 58:3444–3458. https://doi.org/10.1016/j.actamat.2010.02.019

    Article  CAS  Google Scholar 

  54. Gall K, Sehitoglu H, Chumlyakov YI, Kireeva IV (1999) Tension–compression asymmetry of the stress–strain response in aged single crystal and polycrystalline NiTi. Acta Mater 47:1203–1217. https://doi.org/10.1016/S1359-6454(98)00432-7

    Article  CAS  Google Scholar 

  55. Sehitoglu H, Karaman I, Anderson R et al (2000) Compressive response of NiTi single crystals. Acta Mater 48:3311–3326. https://doi.org/10.1016/S1359-6454(00)00153-1

    Article  CAS  Google Scholar 

  56. Šittner P, Heller L, Pilch J et al (2014) Young’s modulus of austenite and martensite phases in superelastic NiTi wires. J Mater Eng Perform 23:2303–2314. https://doi.org/10.1007/s11665-014-0976-x

    Article  CAS  Google Scholar 

  57. Nespoli A, Besseghini S, Pittaccio S et al (2010) The high potential of shape memory alloys in developing miniature mechanical devices: a review on shape memory alloy mini-actuators. Sens Actuators Phys 158:149–160. https://doi.org/10.1016/j.sna.2009.12.020

    Article  CAS  Google Scholar 

  58. Saedi S, Turabi AS, Andani MT et al (2017) Texture, aging, and superelasticity of selective laser melting fabricated Ni-rich NiTi alloys. Mater Sci Eng A 686:1–10. https://doi.org/10.1016/j.msea.2017.01.008

    Article  CAS  Google Scholar 

  59. Saedi S, Turabi AS, Andani MT et al (2016) The influence of heat treatment on the thermomechanical response of Ni-rich NiTi alloys manufactured by selective laser melting. J Alloys Compd 677:204–210. https://doi.org/10.1016/j.jallcom.2016.03.161

    Article  CAS  Google Scholar 

  60. Shayesteh Moghaddam N, Saedi S, Amerinatanzi A et al (2019) Achieving superelasticity in additively manufactured NiTi in compression without post-process heat treatment. Sci Rep 9:41. https://doi.org/10.1038/s41598-018-36641-4

    Article  CAS  Google Scholar 

  61. Haberland C, Elahinia M, Walker JM et al (2014) On the development of high quality NiTi shape memory and pseudoelastic parts by additive manufacturing. Smart Mater Struct 23:104002. https://doi.org/10.1088/0964-1726/23/10/104002

    Article  CAS  Google Scholar 

  62. Saedi S, Turabi AS, Andani MT et al (2016) Thermomechanical characterization of Ni-rich NiTi fabricated by selective laser melting. Smart Mater Struct 25:035005. https://doi.org/10.1088/0964-1726/25/3/035005

    Article  CAS  Google Scholar 

  63. Biffi CA, Fiocchi J, Valenza F et al (2020) Selective laser melting of NiTi shape memory alloy: processability, microstructure, and superelasticity. Shape Mem Superelast 6:342–353. https://doi.org/10.1007/s40830-020-00298-8

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deutsche Forschungsgesellschaft (INST899/3-1 FUGG), BW Invest (bwip BW1_0113/02 IMPriNT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eilon Faran.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cohen, Y., Burkhardt, C., Vogel, L. et al. Sinter-Based Additive Manufacturing of Ni–Ti Shape Memory Alloy. Shap. Mem. Superelasticity 9, 492–503 (2023). https://doi.org/10.1007/s40830-023-00436-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40830-023-00436-y

Keywords

Navigation