Skip to main content
Log in

Shape-Memory Effect and Pseudoelasticity in Fe–Mn-Based Alloys

  • SPECIAL ISSUE: NOVEL SHAPE MEMORY ALLOYS - BEHAVIOR AND PROCESSING, INVITED PAPER
  • Published:
Shape Memory and Superelasticity Aims and scope Submit manuscript

Abstract

Several Fe-based alloys are being considered as potential candidates for applications which require shape-memory behavior or superelastic properties. The possibility of using fabrication methods which are well known in the steel industry is very attractive and encourages a large amount of research in the field. In the present article, Fe–Mn-based alloys are mainly addressed. On the one hand, attention is paid to the shape-memory effect where the alloys contain (a) a maximum amount of Mn up to around 30 wt%, (b) several possible substitutional elements like Si, Cr, Ni, Co, and Nb and (c) some possible interstitial elements like C. On the other hand, superelastic alloys are analyzed, mainly the Fe–Mn–Al–Ni system discovered a few years ago. The most noticeable properties resulting from the martensitic transformations which are responsible for the mentioned properties, i.e., the fcc–hcp in the first case and the bcc–fcc in the latter are discussed. Selected potential applications are also analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sohmura T, Oshima R, Fujita FE (1980) Thermoelastic fcc-fct martensitic transformation in Fe-Pd alloy. Scripta Metall. 14(8):855–956

    Article  Google Scholar 

  2. Kajiwara S (1985) Nearly perfect shape memory effect in Fe-Ni-C alloys. Trans JIM 26(8):595–596

    Article  Google Scholar 

  3. Oshima R, Sugimoto S, Sugiyama M, Hamada T, Fujita FE (1985) Shape memory effect in an ordered Fe//3Pt alloy associated with the fcc-fct thermoelastic martensite transformation. Trans Jpn Inst Metals 26:523–524

    Article  Google Scholar 

  4. Murakami M, Suzuki H, Nakamura Y (1987) Effect of Si on the shape memory effect on polycrystalline Fe-Mn-Si alloys. Trans ISIJ 27:87

    Google Scholar 

  5. Maki T, Furutani S, Tamura I (1989) Shape memory effect related to thin plate martensite with large thermal hysteresis in ausaged Fe-Ni-Co-Ti alloy. ISIJ Int 29(5):438–445

    Article  Google Scholar 

  6. Koval YuN, Monastyrsky GE (1993) Reversible martensite transformation and shape memory effect in Fe-Ni-Nb alloys. Scr Metall 28(1):41–46

    Article  Google Scholar 

  7. Maki T (1998) Martensitic transformations: crystallography. In: Otsuka K, Wayman CM (eds) Shape memory materials. Cambridge University Press, Cambridge

    Google Scholar 

  8. Kajiwara S (1999) Characteristic features of shape memory effect and related transformation behavior in Fe-based alloys. Mater Sci Eng A 273–275:67–68

    Article  Google Scholar 

  9. Otsuka K, Wayman CM (1998) Mechanism of shape memory effect and superelasticity. In: Otsuka K, Wayman CM (eds) Shape memory materials (Chapter 2). Cambridge University Press, Cambridge, pp 27–48

    Google Scholar 

  10. Krishnan RV, Delaey L, Tas H, Warlimont H (1974) Thermoplasticity, pseudoelasticity and the memory effects associated with martensitic transformations - Part 2 The macroscopic mechanical behavior. J Mater Sci 9(9):1536–1544

    Article  Google Scholar 

  11. Wollants P, Roos JR, Delaey L (1993) Thermally-and stress-induced thermoelastic martensitic transformations in the reference frame of equilibrium thermodynamics. Prog Mater Sci 37(3):227–288

    Article  Google Scholar 

  12. Cohen M, Olson GB, Clapp PC (1979) On the classification of displacive phase transformation. In: Proceedings of the international conference on martensitic transformations, Ed. By Department of Materials Science and Engineering, MIT, Cambridge vol 02139, pp 1–11

  13. Christian JW, Olson GB, Cohen M (1995) Classification of displacive transformations: What is a martensitic transformation? J Phys IV C8 V5:3–10

    Google Scholar 

  14. Roytburd AL (1999) Kurdjumov and his school in martensite of the 20th century. Mater Sci Eng A 273–275:1–10

    Article  Google Scholar 

  15. Saburi T (1998) Ti-Ni shape memory alloys. In: Otsuka K, Wayman CM (eds) Shape memory materials, Chapter 3. Cambridge University Press, Cambridge, pp 49–96

    Google Scholar 

  16. Ahlers M (1986) Martensite and equilibrium phases in CuZn and CuZnAl alloys. Prog Mater Sci 30(3):135–186

    Article  Google Scholar 

  17. Simha NK (1995) Crystallography of the tetragonal → monoclinic transformation in Zirconia. J Phys IV 5(C8):1121–1126

    Google Scholar 

  18. Hayakawa M, Okuda T, Oka M (1995) Grain size dependence of the martensitic transformation of Yttria doped tetragonal zirconia polycrystals. J Phys IV 5(C8):1127–1132

    Google Scholar 

  19. Otsuka K, Wayman CM, Nakai K, Sakamoto H, Shimizu K (1976) Superelasticity effects and stress-induced martensitic transformations in Cu-Al-Ni alloys. Acta Metall 24:207–226

    Article  Google Scholar 

  20. Eucken S, Duerig TW (1989) The effects of pseudoelastic prestraining on the tensile behaviour and two-way shape memory effect in aged NiTi. Acta Metall 37(8):2245–2252

    Article  Google Scholar 

  21. Pons J, Sade M, Lovey FC, Cesari E (1993) Pseudoelastic cycling and two-way shape memory effect in β Cu-Zn-Al alloys with γ-precipitates. Mater Trans JIM 34:888–894

    Article  Google Scholar 

  22. Isalgué A, Lovey FC, Sade M, Torra V (1995) Anisotropic behavior in Cu-Zn-Al SMA due to the oriented growth of gamma precipitates. J Phys Colloq 5(C2):153–158

    Google Scholar 

  23. Otsuka K, Wayman CM (1998) Shape memory materials. Cambridge University Press, Cambridge

    Google Scholar 

  24. Ando K, Omori T, Ohnuma I, Kainuma R, Ishida K (2009) Ferromagnetic to weak-magnetic transition accompanied by bcc to fcc transformation in Fe-Mn-Al alloy. Appl Phys Lett 95(21):212504

    Article  Google Scholar 

  25. Huang W (1989) An assessment of the Fe-Mn system. CALPHAD 13(3):243–252

    Article  Google Scholar 

  26. Troiano AR, McGuire FT (1943) A Study of the Iron-Rich Iron-Manganese Alloys. Trans Am Soc Metals 31:340–364

    Google Scholar 

  27. Cotes SM, Sade M, Guillermet AF (1995) Fcc/Hcp martensitic transformation in the Fe-Mn system: Experimental study and thermodynamic analysis of phase stability. Metall Mater Trans A 26(8):1957–1969

    Article  Google Scholar 

  28. Cotes SM, Baruj A, Sade M, Guillermet AF (1995) Thermodynamics of the γ/ε martensitic transformation in Fe-Mn alloys: modelling of the driving force, and calculation of the Ms and As temperatures. J. Phys IV 5(C2):83–88

    Google Scholar 

  29. Marinelli P, Sade M, Guillermet AF (2002) On the structural changes accompanying the fcc/hcp martensitic transformation in Fe-Mn-Co alloys. Scr Mater 46:805–810

    Article  Google Scholar 

  30. Schumann H, Heider F (1965) Einfluss wiederholter Phasenubergange auf die γ-ε-Umwandlung in austenitischen Manganstahlen. Z Metallkd 56:165–172

    Google Scholar 

  31. Bollman W (1961) On the phase transformation of cobalt. Acta Metall 9:972–975

    Article  Google Scholar 

  32. Fujita H, Ueda S (1972) Stacking faults and f.c.c. (γ) → h.c.p. (ε) transformation in 188-type stainless steel. Acta Metall 20:759–767

    Article  Google Scholar 

  33. Cotes SM, Guillermet AF, Sade M (2004) Fcc/Hcp martensitic transformation in the Fe-Mn system: part II. Driving force and thermodynamics of the nucleation process. Metall Mater Trans A 35A:83–91

    Article  Google Scholar 

  34. Horsewell A, Ralph B, Howell PR (1975) Intergranular mechanism for the f.c.c. yields h.c.p. martensitic transformation. Phys Status Solidi 29(2):587–594

    Article  Google Scholar 

  35. Sato A, Sunaga H, Mori T (1979) Reversibility of γ → ε transformation in Fe-18Cr-Ni alloy single crystals. In: Proceedings of ICOMAT, Cambridge, American Institute of Metals, pp 183–188

  36. Inagak H (1992) Shape memory effect of Fe-14%Mn-6%Si-9%Cr-6%Ni alloy polycrystals. Zeitschrift für Metallkunde 83:90–96

    Google Scholar 

  37. Hsu TY, Zuyao X (1999) Martensitic transformation in Fe-Mn-Si based alloys. Mater Sci Eng A 273–275:494–497

    Article  Google Scholar 

  38. Olson GB, Cohen M (1976) A general mechanism of martensitic nucleation: Part I. General concepts and the FCC → HCP transformation. Metall Trans A 7(12):1897–1904

    Article  Google Scholar 

  39. Putaux J-L, Chevalier J-P (1996) HREM study of self-accommodated thermal ε-martensite in an Fe-Mn-Si-Cr-Ni shape memory alloy. Acta Mater 44(4):1701–1716

    Article  Google Scholar 

  40. Bergeon N, Guenin G, Esnouf C (1997) Characterization of the stress-induced e martensite in a Fe-Mn-Si-Cr-Ni shape memory alloy: Microstructural observation at different scales, mechanism of formation and growth. Mater Sci Eng A 238(2):309–316

    Article  Google Scholar 

  41. Enami K, Nagasawa A, Nenno S (1975) Reversible shape memory effect in Fe-base alloys. Scr Metall 9(9):941–948

    Article  Google Scholar 

  42. Tsuzaki K, Ikegami M, Tomota Y, Maki T (1990) Effect of transformation cycling on the ε martensitic transformation in Fe-Mn alloys. ISIJ Int 30:666–673

    Article  Google Scholar 

  43. Jian L, Wayman CM (1992) On the mechanism of the shape memory effect associated with γ(fcc) to ε(hcp) martensitic transformations in Fe-Mn-Si based alloys. Scr Metall Mater 27(3):279–284

    Article  Google Scholar 

  44. Baruj A, Cotes S, Sade M, Guillermet AF (1996) Effects of thermal cycling on the Fcc/Hcp martensitic transformation temperatures in the Fe-Mn system: Thermodynamic analysis, systematic aspects and microstructural interpretation. Zeit fuer Metallkde 87(10):765–772

    Google Scholar 

  45. Baruj A, Troiani HE, Sade M, Guillermet AF (2000) Effects of thermal cycling on the fcc/hcp martensitic transformation temperatures in the Fe-Mn system: Part II. TEM study of the microstructural changes. Philos Mag A 80:2537–2548

    Article  Google Scholar 

  46. Nishiyama Z (1978) In: Cohen M, Meshii M, Wayman CM (eds) Martensitic transformations. Academic Press, New York

    Google Scholar 

  47. Sato A, Soma K, Chishima E, Mori T (1982) Shape memory effect and mechanical behavior of an Fe-30Mn-1Si alloy single crystal. J Phys 43(C4):797–802

    Google Scholar 

  48. Murakami M, Otsuka H, Suzuki H, Matsuda S (1986) Effect of alloying content, phase and magnetic transformation on the shape memory effect of Fe-Mn-Si alloys. Trans ISIJ 27:B-88

    Google Scholar 

  49. Murakami M, Otsuka H, Suzuki H, Matsuda S (1986) Improvement in shape memory effect for Fe-Mn-Si alloys. Trans ISIJ 27:B-89

    Google Scholar 

  50. Hsu TY, Zuyao X (1999) Martensitic transformation in Fe-Mn-Si based alloys. Mater Sci Eng A 273–275:494–497

    Article  Google Scholar 

  51. Murakami M, Otsuka H, Suzuki HG, Matsuda S (1986) Complete shape memory effect in polycrystalline Fe-Mn-Si alloys. In: Proceedings of The international conference in martensitic transformation (ICOMAT-86), The japan institute of metals, pp 985-990

  52. Nikolin BI, Sokolov OG, Lysak LI, Makogon YuN (1977) Influence of silicon and manganese in the lattice parameter of γ and ε phases and volume effects of the γ → ε transformation in alloys of the G20 type. Phys Met Metall 44(3):639–642

    Google Scholar 

  53. Baruj A, Cotes S, Sade M, Guillermet AF (1995) Coupling binary and ternary information in assessing the fcc/hcp relative phase stability and martensitic transformation in Fe-Mn-Co and Fe-Mn-Si alloys. J Phys Colloq 5(C8):373–378

    Google Scholar 

  54. Cotes S, Guillermet AF, Sade M (1998) Phase stability and fcc/hcp martensitic transformation in Fe-Mn-Si alloys. Part I. Experimental study and systematics of the Ms and As temperatures. J Alloys Comp 278:231–238

    Article  Google Scholar 

  55. Cotes S, Guillermet AF, Sade M (1998) Phase Stability and fcc/hcp martensitic transformation in Fe-Mn-Si alloys: Part II. Thermodynamic modelling of the driving forces and the Ms and As temperatures. J. Alloys Comp 280:168–177

    Article  Google Scholar 

  56. Sade M, Halter K, Hornbogen E (1988) The effect of thermal cycling on the transformation behavior of Fe-Mn-Si Shape memory alloys. Z fuer Metallkunde 79(8):487–491

    Google Scholar 

  57. Andrade MS, Osthues RM, Arruda GJ (1999) The influence of thermal cycling on the transition temperatures of a Fe-Mn-Si shape memory alloy. Mater Sci Eng A 273–275:512–516

    Article  Google Scholar 

  58. Baruj A, Cotes S, Sade M, Guillermet AF (1996) Effects of thermal cycling on the Fcc/Hcp martensitic transformation temperatures in the Fe-Mn system: Thermodynamic analysis, systematic aspects and microstructural interpretation. Zeit fuer Metallkde 87(10):765–772

    Google Scholar 

  59. Baruj A, Guillermet AF, Sade M (1999) Effects of thermal cycling and plastic deformation upon the Gibbs energy barriers to martensitic transformation in Fe-Mn and Fe-Mn-Co alloys. Mater Sci Eng A 273–275:507–511

    Article  Google Scholar 

  60. Takaki S, Nakatsu H, Tokunaga Y (1993) Effects of austenite grain size on ε martensitic transformation in Fe-15mass% Mn Alloy. Mater Trans JIM 34:489–495

    Article  Google Scholar 

  61. Shiming T, Jinhai L, Shiwei Y (1991) Two-way shape memory effect of an Fe-Mn-Si alloy. Scr Metall Mater 25:2613–2615

    Article  Google Scholar 

  62. Li H, Dunne D, Kennon N (1999) Factors influencing shape memory effect and phase transformation behavior of Fe-Mn-Si based shape memory alloys. Mater Sci Eng A 273–275:517–523

    Article  Google Scholar 

  63. Troiani HE, Sade M, Bertolino G, Baruj A (2009) Martensitic transformation temperatures and microstructural features of FeMnCr Alloys. ESOMAT 2009:06002

    Google Scholar 

  64. Mertinger V, Benke M, Nagy E, Pataki T (2014) Reversible characteristics and cycling effects of the ε ↔ γ martensitic transformations in Fe-Mn-Cr Twip/Trip steels. J Mater Eng Perform 23(7):2347–2350

    Article  Google Scholar 

  65. Mertinger V, Benke M, Nagy E (2015) Effect of Cr Content on the TWIP Behavior in Fe-Mn-Cr Steels. Mater Today 2:S673–S676

    Article  Google Scholar 

  66. Nishimura T (2014) Structure of the passive film formed on Fe-Mn-Si-Cr-Ni shape memory alloy after wet and Dry corrosion test. Mater Trans 55(6):871–876

    Article  Google Scholar 

  67. Sade M, Baruj A, Troiani HE (2008) Fcc/hcp martensitic transformation temperatures and thermal cycling evolution in Fe-Mn-Cr alloys, New Developments on Metallurgy and Applications of High Strength Steels. In: Proceedings of the international conference new developments on metallurgy and applications of high strength steels, v2 physical metallurgy and alloy design, pp 1183–1191

  68. Shiming T, Shiwey Y (1992) Effect of pre-strain on shape memory behavior of an Fe-Mn-Si-Cr-Ni-Co. Scr Metall 27:229–232

    Article  Google Scholar 

  69. Reyhani MM, McCormick PG (1994) Effect of thermomechanical cycling in an FeMnSiCrNi shape memory alloy. Scr Metall 31:875–878

    Article  Google Scholar 

  70. Bergeon N, Kajiwara S, Kikuchi T (2000) Atomic force microscope study of stress-induced martensite formation and its reverse transformation in a thermomechanically treated Fe-Mn-Si-Cr-Ni alloy. Acta Mater 48:4053–4064

    Article  Google Scholar 

  71. Dong ZZ, Kajiwara S, Kikuchi T, Sawaguchi T (2005) Effect of pre-deformation at room temperature on shape memory properties of stainless type Fe-15Mn-5Si-9Cr-5Ni-(0.5-1.5)NbC alloys. Acta Mater 53:4009–4018

    Article  Google Scholar 

  72. Wen YH, Zhang W, Li N, Peng HB, Xiong LR (2007) Principle and realization of improving shape memory effect in Fe-Mn-Si-Cr-Ni alloy through aligned precipitations of second-phase particles. Acta Mater 55:6526–6534

    Article  Google Scholar 

  73. Lü Y, Hutchinson B, Molodov DA, Gottstein G (2010) Effect of deformation and annealing on the formation and reversion of e-martensite in an Fe-Mn-C alloy. Acta Mater 58:3079–3090

    Article  Google Scholar 

  74. Baruj A, Bertolino G, Troiani HE (2010) Temperature dependence of critical stress and pseudoelasticity in a Fe-Mn-Si-Cr pre-rolled alloy”. J Alloy Compd 502(1):54–58

    Article  Google Scholar 

  75. Stanford N, Dunne DP (2006) Thermo-mechanical processing and shape memory effect in an Fe-based shape memory alloy. Mater Sci Eng A 422(1–2):352–359

    Article  Google Scholar 

  76. Baruj A, Troiani HE (2008) The effect of pre-rolling Fe-Mn-Si-based shape memory alloys: mechanical properties and transmission electron microscopy examination. Mater Sci Eng A 481–482:574–577

    Article  Google Scholar 

  77. Baruj A, Kikuchi T, Kajiwara S, Shinya N (2004) Improvement of shape memory properties of NbC containing Fe-Mn-Si based shape memory alloys by simple thermomechanical treatments. Mater Sci Eng A 378(1–2):333–336

    Article  Google Scholar 

  78. Wen YH, Peng HB, Raabe D, Gutierrez-Urrutia I, Chen J, Du YY (2014) Large recovery strain in Fe-Mn-Si-based shape memory steels obtained by engineering annealing twin boundaries. Nat Commun 5, art. 4964

  79. Tanaka Y, Himuro Y, Kainuma R, Sutou Y, Omori T, Ishida K (2010) Ferrous polycrystalline shape-memory alloy showing huge superelasticity. Science 327(5972):1488–1490

    Article  Google Scholar 

  80. Omori T, Ando K, Okano M, Xu X, Tanaka Y, Ohnuma I, Kainuma R, Ishida K (2011) Superelastic effect in polycrystalline ferrous alloys. Science 333:68–71

    Article  Google Scholar 

  81. Kireeva IV, Chumlyakov YI, Kirillov VA, Karaman I, Cesari E (2011) Orientation and temperature dependence of superelasticity caused by reversible γ-α′ martensitic transformations in FeNiCoAlTa single crystals. Tech Phys Lett 37(5):487–490

    Article  Google Scholar 

  82. Sehitoglu H, Karaman I, Zhang XY, Chumlyakov Y, Maier HJ (2011) Deformation of FeNiCoTi shape memory single crystals. Scr Mater 44(5):779–784

    Article  Google Scholar 

  83. Sehitoglu H, Zhang XY, Kotil T, Canadinc D, Chumlyakov Y, Maier HJ (2002) Shape memory behavior of FeNiCoTi single and polycrystals. Metall Mater Trans A 33(12):3661–3672

    Article  Google Scholar 

  84. Chumlyakov Y, Kireeva IV, Panchenko EY, Zakharova EG, Kirillov VA (2004) Effects of shape memory and superelasticity in FeNiCoTi single crystals with γ ↔ α’ thermoelastic martensitic transformation. Dokl Phys 394(1):54–57

    Google Scholar 

  85. Chumlyakov YI, Kireeva IV, Kretinina IV, Karaman I, Maier H (2013) Shape Memory effect and Superelasticity in the [001] Single crystals of a FeNiCoAlTa Alloy with γ-α′-Thermoelastic Martensitic Transformations. Russ Phys J 56(8):920–929

    Article  Google Scholar 

  86. Ma J, Kockar B, Evirgen A, Karaman I, Luo ZP, Chumlyakov Y (2012) Shape memory behavior and tension-compression asymmetry of a FeNiCoAlTa single-crystalline shape memory alloy. Acta Mater 60(5):2186–2195

    Article  Google Scholar 

  87. Ma J, Hornbuckle BC, Karaman I, Thompson GB, Luo ZP, Chumlyakov Y (2013) The effect of nanoprecipitates on the superelastic properties of FeNiCoAlTa shape memory alloy single crystals. Acta Mater 61(9):3445–3455

    Article  Google Scholar 

  88. Evirgen A, Ma J, Karaman I, Luo ZP, Chumlyakov Y (2012) Effect of aging on the superelastic response of a single crystalline FeNiCoAlTa shape memory alloy. Scr Mater 67(5):475–478

    Article  Google Scholar 

  89. Krooß P, Niendorf T, Karaman I, Chumlyakov Y, Maier HJ (2012) Cyclic deformation behavior of aged FeNiCoAlTa single crystals. Funct Mater Lett 5(4):1250045

    Article  Google Scholar 

  90. Krooß P, Holzweißig M, Niendorf T, Somsen C, Schaper M, Chumlyakov Y, Maier HJ (2014) Thermal cycling behavior of an aged FeNiCoAlTa single-crystal shape memory alloy. Scr Mater 81:28–31

    Article  Google Scholar 

  91. Krooß P, Somsen C, Niendorf T, Schaper M, Karaman I, Chumlyakov Y, Eggeler G, Maier HJ (2014) Cyclic degradation mechanisms in aged FeNiCoAlTa shape memory single crystals. Acta Mater 79:126–137

    Article  Google Scholar 

  92. Omori T, Abe S, Tanaka Y, Lee DY, Ishida K, Kainuma R (2013) Thermoelastic martensitic transformation and superelasticity in Fe–Ni–Co–Al–Nb–B polycrystalline alloy. Scr Mater 69:812–815

    Article  Google Scholar 

  93. Lee D, Omori T, Kainuma R (2014) Ductility enhancement and superelasticity in Fe–Ni–Co–Al–Ti–B polycrystalline alloy. J Alloy Compd 617:120–123

    Article  Google Scholar 

  94. Chumlyakov YI, Kireeva IV, Kutz OA, Kuts OA, Platonova YuN, Poklonov VV, Kukshauzen IV, Kukshauzen DA, Panchenko MYu, Reunova KA (2016) Thermoelastic martensitic transformations in single crystals of FeNiCoAlX(B) alloys. Russ Phys J 58(11):1549–1556

    Article  Google Scholar 

  95. Chumlyakov YI, Kireeva IV, Kutz OA, Turabi AS, Karaca HE, Karaman I (2016) Unusual reversible twinning modes and giant superelastic strains in FeNiCoAlNb single crystals. Scr Mater 119:43–46

    Article  Google Scholar 

  96. Umino R, Liu XJ, Sutou Y, Wang CP, Ohnuma I, Kainuma R, Ishida K (2006) Experimental determination and thermodynamic calculation of phase equilibria in the Fe-Mn-Al system. JPEDAV 27:54–62

    Article  Google Scholar 

  97. Sutou Y, Omori T, Yamauchi K, Ono N, Kainuma R, Ishida K (2005) Effect of grain size and texture on pseudoelasticity in Cu–Al–Mn-based shape memory wire. Acta Mater 53:4121–4133

    Article  Google Scholar 

  98. Sutou Y, Omori T, Kainuma R, Ishida K (2013) Grain size dependence of pseudoelasticity in polycrystalline Cu–Al–Mn-based shape memory sheets. Acta Mater 61:3842–3850

    Article  Google Scholar 

  99. Chen Y, Schuh CA (2011) Size effects in shape memory alloy microwires. Acta Mater 59:537–553

    Article  Google Scholar 

  100. La Roca P, Isola L, Vermaut Ph, Malarria J (2015) Relationship between martensitic plate size and austenitic grain size in martensitic transformations. Appl Phys Lett 106:221903

    Article  Google Scholar 

  101. Waitz T, Antretter T, Fischer FD, Simha NK, Karnthaler HP (2007) Size effects on the martensitic phase transformation of NiTi nanograins. J Mech Phys Solids 55:419–444

    Article  Google Scholar 

  102. Omori T, Okano M, Kainuma R (2013) Effect of grain size on superelasticity in Fe-Mn-Al-Ni shape memory alloy wire. Appl Phys Lett 1(3):032103

    Google Scholar 

  103. Tseng LW, Ma J, Vollmer M, Krooß P, Niendorf T, Karaman I (2016) Effect of grain size on the superelastic response of a FeMnAlNi polycrystalline shape memory alloy. Scr Mater 125:68–72

    Article  Google Scholar 

  104. de Castro Bubani F, Sade M, Lovey F (2012) Improvements in the mechanical properties of the 18R ↔ 6R high-hysteresis martensitic transformation by nanoprecipitates in CuZnAl alloys. Mater Sci Eng A 543:88–95

    Article  Google Scholar 

  105. Baruj A, Kikuchi T, Kajiwara S, Shinya N (2002) Effect of pre-deformation of Austenite on shape memory properties in Fe-Mn-Si-based alloys containing Nb and C. Mater Trans 43:585–588

    Article  Google Scholar 

  106. Omori T, Nagasako M, Okano M, Endo K, Kainuma R (2012) Microstructure and martensitic transformation in the Fe-Mn-Al-Ni shape memory alloy with B2-type coherent fine particles. Appl Phys Lett 101(23):231907

    Article  Google Scholar 

  107. Tseng LW, Ma J, Wang SJ, Karaman I, Kaya M, Lou ZP, Chumlyakov YI (2015) Superelastic response of a single crystalline FeMnAlNi shape memory alloy under tension and compression. Acta Mater 89:234–383

    Article  Google Scholar 

  108. Tseng LW, Ma J, Hornbuckle BC, Karaman I, Thompson GB, Lou ZP, Chumlyakov YI (2015) The effect of precipitates on the superelastic response of [011] oriented FeMnAlNi single crystals under compression. Acta Mater 97:234–244

    Article  Google Scholar 

  109. Tseng LW, Ma J, Wang SJ, Karaman I, Chumlyakov YI (2016) Effects of crystallographic orientation on the superelastic response of FeMnAlNi single crystals. Scr Mater 116:147–151

    Article  Google Scholar 

  110. Vollmer M, Segel C, Krooß P, Günther J, Tseng LW, Karaman I, Weidner A, Biermann H, Niendorf T (2015) On the effect of gamma phase formation on the pseudoelastic performance of polycrystalline Fe-Mn-Al-Ni shape memory alloys. Scr Mater 108:23–26

    Article  Google Scholar 

  111. Vollmer M, Krooß P, Kriegel MJ, Klemm V, Somsen C, Ozcan H, Karaman I, Weidner A, Rafaja D, Biermann H, Niendorf T (2016) Cyclic degradation in bamboo-like Fe-Mn-Al-Ni shape memory alloys-The role of grain orientation. Scr Mater 114:156–160

    Article  Google Scholar 

  112. Niendorf T, Brenne F, Krooß P, Voller M, Günter J, Schwarze D, Biermann H (2016) Microstructural evolution and functional properties of Fe-Mn-Al-Ni shape memory alloy processed by Selective laser melting. Metall Mater Trans A 47(6):2569–2573

    Article  Google Scholar 

  113. Omori T, Iwazako H, Kainuma R (2016) The abnormal grain growth induced by cyclic heat treatment in Fe-Mn-Al-Ni superelastic alloy. Mater Des 101:263–269

    Google Scholar 

  114. Duerig TW, Melton KN, Stöckel D, Wayman CM (1990) Engineering aspects of shape memory alloys. Butterworth-Heinemann, London, UK

    Google Scholar 

  115. Kajiwara S, Baruj A, Kikuchi T, Shinya N (2003) Low-cost high-quality Fe-based shape memory alloys suitable for pipe joints. Proc SPIE 5053:250–261

    Article  Google Scholar 

  116. Otsuka H, Yamada H, Maruyama T, Tanahashi H, Matsuda S, Murakami M (1990) Effects of alloying additions on Fe-Mn-Si shape memory alloys. ISIJ Int 30:674–679

    Article  Google Scholar 

  117. Tanahashi H, Maruyama T, Kubo H (1994) Applications of Fe-Mn-Si alloy for pipe joints. Trans Mater Res Soc Jpn 18B:1149–1154

    Google Scholar 

  118. Druker AV, Perotti A, Esquivel I, Malarría J (2014) A manufacturing process for shaft and pipe couplings of Fe-Mn-Si-Ni-Cr shape memory alloys. Mater Des 56:878–888

    Article  Google Scholar 

  119. Druker AV, Perotti A, Esquivel I, Malarría J (2014) Optimization of Fe-15Mn-5Si-9Cr-5Ni shape memory alloy for pipe and shaft couplings. J Mater Eng Perform 23:2732–2737

    Article  Google Scholar 

  120. Watanabe Y, Miyazaki E, Okada H (2002) Enhanced mechanical properties of Fe-Mn-Si-Cr shape memory fiber/plaster smart composite. Mater Trans 43(5):974–983

    Article  Google Scholar 

  121. Mino J, Komanicky V, Durisin M, Sakl K, Kovac J, Varga R (2015) Structural and magnetic characterization of Fe-Mn-Al-Ni Pseudo-Heusler alloy. IEEE Trans Magn 51(1):4000903

    Article  Google Scholar 

  122. Grässel O, Krüger L, Frommeyer G (2000) L.W Meyer: High strength Fe-Mn-(Al, Si) TRIP/TWIP steels development—properties—application. Int J Plast 16(10–11):1391–1409

    Article  Google Scholar 

  123. Nikulin I, Sawaguchi T, Tsuzaki K (2013) Effect of alloying composition on low-cycle fatigue properties and microstructure of Fe-30Mn-(6x)Si-xAl TRIP/TWIP alloys”. Mater Sci Eng A 587:192

    Article  Google Scholar 

  124. Millán J, Sandlobes S, Al-Zubi A, Hickel T, Choi P, Neugebauer J, Ponge D, Raabe D (2014) Designing Heusler nanoprecipitates by elastic misfit stabilization in Fe-Mn maraging steels. Acta Mater 76:94–105

    Article  Google Scholar 

  125. Cladera A, Weber B, Leinenbach C, Czaderski C, Shahverdi M, Motavalli M (2014) Iron-based shape memory alloys for civil engineering structures: an overview. Constr Build Mater 63:281

    Article  Google Scholar 

  126. Sawaguchi T, Sahu P, Kikuchi T, Ogawa K, Kajiwara S, Kushibe A, Higashino M, Ogawa T (2006) Vibration mitigation by the reversible fcc/hcp martensitic transformation during cyclic tension compression loading of an Fe-Mn-Si-based shape memory alloy. Scr Mater 54:1885

    Article  Google Scholar 

  127. Sawaguchi T, Bujoreanu L-G, Kikuchi T, Ogawa K, Koyama M, Murakami M (2008) Mechanism of reversible transformation-induced plasticity of Fe-Mn-Si shape memory alloys. Scr Mater 59:826

    Article  Google Scholar 

  128. Sawaguchi T, Nikulin I, Ogawa K, Sekido K, Takamori S, Maruyama T, Chiba Y, Kushibe A, Inouec Y, Tsuzaki K (2015) Designing Fe-Mn-Si alloys with improved low-cycle fatigue lives”. Scr Mater 99:49–52

    Article  Google Scholar 

  129. Jani JM, Leary M, Subic A, Gibson MA (2014) A review of shape memory alloy research, applications and opportunities. Mater Des 56:1078–1113

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank ANPCyT Argentina (PICT 2012-0884), CONICET (PIP 0513 and PIP 0056), and U.N. Cuyo (06/C516) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sade.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

La Roca, P., Baruj, A. & Sade, M. Shape-Memory Effect and Pseudoelasticity in Fe–Mn-Based Alloys. Shap. Mem. Superelasticity 3, 37–48 (2017). https://doi.org/10.1007/s40830-016-0097-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40830-016-0097-5

Keywords

Navigation