Skip to main content
Log in

Effect of Al Content on Abnormal Grain Growth and Superelasticity in Fe–Mn–Al–Cr–Ni Shape Memory Alloys with Near-Zero Temperature-Dependence of Transformation Stress

  • Technical Article
  • Published:
Shape Memory and Superelasticity Aims and scope Submit manuscript

Abstract

The solvus temperature of face-centered cubic (FCC) phase in Fe–34Mn–xAl–4Cr–7.5Ni (x = 13, 14, and 15) shape memory alloys with different Al contents, and their abnormal grain growth and superelasticity at various temperatures were evaluated. With increasing Al content, the solvus temperature of the FCC phase decreased and the FCC precipitates became finer. Whereas cyclic heat treatment induced abnormal grain growth (AGG) in all samples, large grains were obtained more easily in the alloys with higher Al content. The critical stress for martensitic transformation increased with increasing Al content. The x = 14 alloy is the optimal composition considering grain growth and superelasticity. The newly developed Fe–34Mn–14Al–4Cr–7.5Ni alloy, in which single-crystal can easily be fabricated by AGG, exhibited superelasticity at temperatures ranging from − 263 °C (10 K) to 27 °C (300 K), with a very small temperature-dependence of the critical stress, comparable to that of conventional Fe–34Mn–13.5Al–3Cr–7.5Ni alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Dunne DP, Wayman CM (1973) The effect of austenite ordering on the martensite transformation in Fe-Pt alloys near the composition Fe3Pt: I. Morphology and transformation characteristics Metall Trans 4:137–145

    CAS  Google Scholar 

  2. Sohmura T, Oshima R, Fujita FE (1980) Thermoelastic FCC-FCT martensitic transformation in Fe-Pd alloy. Scr Metall 14:855–856

    Article  Google Scholar 

  3. Maki T, Kobayashi K, Minato M, Tamura I (1984) Thermoelastic martensite in an ausaged Fe-Ni-Ti-Co alloy. Scr Metall 18:1105–1109

    Article  CAS  Google Scholar 

  4. Tanaka Y, Himuro Y, Kainuma R et al (2010) Ferrous polycrystalline shape-memory alloys showing huge superelasticity. Science 327:1488–1490

    Article  CAS  Google Scholar 

  5. Omori T, Abe S, Tanaka Y et al (2013) Thermoelastic martensitic transformation and superelasticity in Fe–Ni–Co–Al–Nb–B polycrystalline alloy. Scr Mater 69:812–815

    Article  CAS  Google Scholar 

  6. Lee D, Omori T, Kainuma R (2014) Ductility enhancement and superelasticity in Fe–Ni–Co–Al–Ti–B polycrystalline alloy. J Alloys Compd 617:120–123

    Article  CAS  Google Scholar 

  7. Sato A, Chishima E, Soma K, Mori T (1982) Shape memory effect in γ⇄ϵ transformation in Fe-30Mn-1Si alloy single crystals. Acta Metall 30:1177–1183

    Article  CAS  Google Scholar 

  8. Sawaguchi T, Maruyama T, Otsuka H et al (2016) Design concept and applications of Fe-Mn-Si-based alloys-from shape-memory to seismic response control. Mater Trans 57:283–293

    Article  CAS  Google Scholar 

  9. La Roca P, Baruj A, Sade M (2017) Shape-memory effect and pseudoelasticity in Fe–Mn-based alloys. Shape Mem Superelasticity 3:37–48

    Article  Google Scholar 

  10. Omori T, Watanabe K, Umetsu RY et al (2009) Martensitic transformation and magnetic field-induced strain in Fe-Mn-Ga shape memory alloy. Appl Phys Lett 95:27–30

    Article  CAS  Google Scholar 

  11. Zhu W, Liu EK, Feng L et al (2009) Magnetic-field-induced transformation in FeMnGa alloys. Appl Phys Lett 95:e222512

    Article  CAS  Google Scholar 

  12. Omori T, Ando K, Okano M et al (2011) Superelastic effect in polycrystalline ferrous alloys. Science 333:68–71

    Article  CAS  Google Scholar 

  13. Lee D, Omori T, Han K et al (2018) Effect of thermomechanical processing on texture and superelasticity in Fe–Ni-Co-Al–Ti-B alloy. Shape Mem Superelasticity 4:102–111

    Article  Google Scholar 

  14. Zhang C, Zhu C, Shin S, Vecchio K (2018) Enhancement of <001> recrystallization texture in non-equiatomic Fe-Ni-Co-Al-based high entropy alloys by combination of annealing and Cr addition. J Alloys Compd 768:277–286

    Article  CAS  Google Scholar 

  15. Lee D, Omori T, Han K et al (2020) Texture formation in a polycrystalline Fe–Ni–Co–Al–Ti–B shape memory alloy. ISIJ Int 60:2973–2982

    Article  CAS  Google Scholar 

  16. Sobrero CE, Lauhoff C, Wegener T et al (2020) On the impact of texture and grain size on the pseudoelastic properties of polycrystalline Fe–Ni–Co–Al–Ti alloy. Shape Mem Superelasticity 6:191–201

    Article  Google Scholar 

  17. Ma J, Hornbuckle BC, Karaman I et al (2013) The effect of nanoprecipitates on the superelastic properties of FeNiCoAlTa shape memory alloy single crystals. Acta Mater 61:3445–3455

    Article  CAS  Google Scholar 

  18. Tseng LW, Ma J, Karaman I et al (2015) Superelastic response of the FeNiCoAlTi single crystals under tension and compression. Scr Mater 101:1–4

    Article  CAS  Google Scholar 

  19. Chumlyakov YI, Kireeva IV, Kuts OA et al (2015) Shape memory effect and superelasticity in [001] single crystals of Fe–Ni–Co–Al–Nb(B) ferromagnetic alloy. Russ Phys J 58:889–897

    Article  CAS  Google Scholar 

  20. Ando K, Omori T, Ohnuma I et al (2009) Ferromagnetic to weak-magnetic transition accompanied by bcc to fcc transformation in Fe-Mn-Al alloy. Appl Phys Lett 95:e212504

    Article  CAS  Google Scholar 

  21. Omori T, Nagasako M, Okano M et al (2012) Microstructure and martensitic transformation in the Fe-Mn-Al-Ni shape memory alloy with B2-type coherent fine particles. Appl Phys Lett 101:e231907

    Article  CAS  Google Scholar 

  22. Tseng LW, Ma J, Wang SJ et al (2015) Superelastic response of a single crystalline FeMnAlNi shape memory alloy under tension and compression. Acta Mater 89:374–383

    Article  CAS  Google Scholar 

  23. Xia J, Xu X, Miyake A et al (2017) Stress- and magnetic field-induced martensitic transformation at cryogenic temperatures in Fe–Mn–Al–Ni shape memory alloys. Shape Mem Superelasticity 3:467–475

    Article  Google Scholar 

  24. Omori T, Okano M, Kainuma R (2013) Effect of grain size on superelasticity in Fe-Mn-Al-Ni shape memory alloy wire. APL Mater 1:e032103

    Article  CAS  Google Scholar 

  25. Tseng LW, Ma J, Vollmer M et al (2016) Effect of grain size on the superelastic response of a FeMnAlNi polycrystalline shape memory alloy. Scr Mater 125:68–72

    Article  CAS  Google Scholar 

  26. Tseng LW, Ma J, Hornbuckle BC et al (2015) The effect of precipitates on the superelastic response of [100] oriented FeMnAlNi single crystals under compression. Acta Mater 97:234–244

    Article  CAS  Google Scholar 

  27. La Roca P, Baruj A, Sobrero CE et al (2017) Nanoprecipitation effects on phase stability of Fe-Mn-Al-Ni alloys. J Alloys Compd 708:422–427

    Article  CAS  Google Scholar 

  28. Ozcan H, Ma J, Wang SJ et al (2017) Effects of cyclic heat treatment and aging on superelasticity in oligocrystalline Fe-Mn-Al-Ni shape memory alloy wires. Scr Mater 134:66–70

    Article  CAS  Google Scholar 

  29. Tseng LW, Ma J, Wang SJ et al (2016) Effects of crystallographic orientation on the superelastic response of FeMnAlNi single crystals. Scr Mater 116:147–151

    Article  CAS  Google Scholar 

  30. Poklonov VV, Chumlyakov YI, Kireeva IV, Kirillov VA (2018) Superelastic response in <1 2 2>-oriented single crystals of FeMnAlNi shape memory alloy in tension and compression. Mater Lett 233:195–198

    Article  CAS  Google Scholar 

  31. Tseng LW, Ma J, Chumlyakov YI, Karaman I (2019) Orientation dependence of superelasticity in FeMnAlNi single crystals under compression. Scr Mater 166:48–52

    Article  CAS  Google Scholar 

  32. Omori T, Kusama T, Kawata S et al (2013) Abnormal grain growth induced by cyclic heat treatment. Science 341:1500–1502

    Article  CAS  Google Scholar 

  33. Kusama T, Omori T, Saito T et al (2017) Ultra-large single crystals by abnormal grain growth. Nat Commun 8:354

    Article  CAS  Google Scholar 

  34. Omori T, Iwaizako H, Kainuma R (2016) Abnormal grain growth induced by cyclic heat treatment in Fe-Mn-Al-Ni superelastic alloy. Mater Des 101:263–269

    Article  CAS  Google Scholar 

  35. Vollmer M, Arold T, Kriegel MJ et al (2019) Promoting abnormal grain growth in Fe-based shape memory alloys through compositional adjustments. Nat Commun 10:2337

    Article  CAS  Google Scholar 

  36. Vollmer M, Bauer A, Frenck J-M et al (2021) Novel prestressing applications in civil engineering structures enabled by Fe-Mn-Al-Ni shape memory alloys. Eng Struct 241:e112430

    Article  Google Scholar 

  37. Vollmer M, Krooß P, Karaman I, Niendorf T (2017) On the effect of titanium on quenching sensitivity and pseudoelastic response in Fe-Mn-Al-Ni-base shape memory alloy. Scr Mater 126:20–23

    Article  CAS  Google Scholar 

  38. Xia J, Omori T, Kainuma R (2020) Abnormal grain growth in Fe–Mn–Al–Ni shape memory alloy with higher Al content. Scr Mater 187:355–359

    Article  CAS  Google Scholar 

  39. Vallejos JM, Giordana MF, Sobrero CE, Malarria JA (2020) Excellent pseudoelasticity of Al-rich Fe–33Mn–17Al–6Ni–0.15C (at%) shape memory single crystals obtained without an aging conditioning stage. Scr Mater 179:25–29

    Article  CAS  Google Scholar 

  40. Walnsch A, Kriegel MJ, Motylenko M et al (2021) Thermodynamics of martensite formation in Fe–Mn–Al–Ni shape memory alloys. Scr Mater 192:26–31

    Article  CAS  Google Scholar 

  41. Walnsch A, Kriegel MJ, Fischer PDB et al (2021) Nanoscale twinning and superstructures of martensite in the Fe–Mn–Al–Ni system. Materialia 16:e101062

    Article  CAS  Google Scholar 

  42. Umino R, Liu XJ, Sutou Y et al (2006) Experimental determination and thermodynamic calculation of phase equilibria in the Fe-Mn-Al system. J Phase Equilibria Diffus 27:54–62

    Article  CAS  Google Scholar 

  43. Villars. P, Prince. A, Okamoto. H (eds) 1995 Handbook of ternary alloy phase diagrams, Materials Park (Ohio), American Society for Metals, 7:8777

  44. Noguchi Y, Omori T, Kainuma R (2017) Effects of Cr on martensitic transformation and oxidation resistance in Fe-Mn-Al-Ni alloys. In: International conference on martensitic transformations (ICOMAT-2017)

  45. Xia J, Noguchi Y, Xu X et al (2020) Iron-based superelastic alloys with near-constant critical stress temperature dependence. Science 369:855–858

    Article  CAS  Google Scholar 

  46. Ozcan H (2018) Private Communication

  47. Xia J (2021) Development of novel Fe-Mn-Al-Ni based superelastic alloy system with tunable temperature-dependence on transformation stress. Doctor Thesis, Tohoku University.

  48. Hao SM, Takayama T, Ishida K, Nishizawa T (1984) Miscibility gap in Fe-Ni-Al and Fe-Ni-Al-Co systems. Metall Trans A 15:1819–1828

    Article  Google Scholar 

  49. Hao SM, Ishida K, Nishizawa T (1985) Role of alloying elements in phase decomposition in alnico magnet alloys. Metall Trans A 16:179–185

    Article  Google Scholar 

  50. Kainuma R, Ise M, Ishikawa K et al (1998) Phase equilibria and stability of the B2 phase in the Ni-Mn-Al and Co-Mn-Al systems. J Alloys Compd 269:173–180

    Article  CAS  Google Scholar 

  51. Niitsu K, Xu X, Umetsu RY, Kainuma R (2013) Stress-induced transformations at low temperatures in a Ni45Co5Mn36In14 metamagnetic shape memory alloy. Appl Phys Lett 103:e242406

    Article  CAS  Google Scholar 

  52. Ozcan H, Ma J, Karaman I et al (2018) Microstructural design considerations in Fe-Mn-Al-Ni shape memory alloy wires: Effects of natural aging. Scr Mater 142:153–157

    Article  CAS  Google Scholar 

  53. Abuzaid W, Wu Y, Sidharth R, Brenne F, Alkan S, Vollmer M, Krooß P, Niendorf T, Sehitoglu H (2019) Shape Mem Superelasticity 5:263–277

    Article  Google Scholar 

  54. Frenck JM, Vollmer M, Mandel M et al (2021) On the Influence of Microstructure on the Corrosion Behavior of Fe–Mn–Al–Ni Shape Memory Alloy in 5.0 wt% NaCl Solution. Adv Eng Mater 23:1–9

    Article  CAS  Google Scholar 

  55. Mandel M, Kietov V, Hornig R et al (2021) On the polarisation and Mott-Schottky characteristics of an Fe-Mn-Al-Ni shape-memory alloy and pure Fe in NaCl-free and NaCl-contaminated Ca(OH)2, sat solution—A comparative study. Corros Sci 179:e109172

    Article  CAS  Google Scholar 

  56. Yuan X, Zhao Y, Li X, Chen L (2017) Effect of Cr on mechanical properties and corrosion behaviors of Fe-Mn-C-Al-Cr-N TWIP steels. J Mater Sci Technol 33:1555–1560

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by JSPS KAKENHI grant 15H05766. JX appreciates the experimental support provided by Dr. K. Kobayashi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshihiro Omori.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of a special topical focus in Shape Memory and Superelasticity on Fe-Based Shape Memory Alloys. This issue was organized by Dr. Toshihiro Omori and Dr. Ryosuke Kainuma, Tohoku University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, J., Hoshi, T., Xu, X. et al. Effect of Al Content on Abnormal Grain Growth and Superelasticity in Fe–Mn–Al–Cr–Ni Shape Memory Alloys with Near-Zero Temperature-Dependence of Transformation Stress. Shap. Mem. Superelasticity 7, 402–413 (2021). https://doi.org/10.1007/s40830-021-00349-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40830-021-00349-8

Keywords

Navigation