Skip to main content
Log in

Influence of V2O5 and AlF3 on Microstructure of Acicular Mullite Diesel Particulate Filter Along with Soot Oxidation Kinetics

  • Published:
Emission Control Science and Technology Aims and scope Submit manuscript

Abstract

In current research, aluminium oxide and silicon dioxide are used as raw materials for fabricating main structures of mullite diesel particulate filters. The variable substances applied to develop acicular mullite structure are titanium dioxide, aluminium fluoride, and vanadium oxide. Carbon black was used to create pores in mullite diesel particulate filters with 35 to 45% porosity based on the sintering temperature of 1300°C. The images of the filter’s porous surface microstructure were investigated using scanning electron microscopy. Vanadium oxide and aluminium fluoride play important roles in growth of acicular shape and acicular size for membrane, respectively. Acicular size of membrane varies from a hundred nano-meters to the submicron in needle diameter. The relation of all factors between pore size, porosity, surface roughness, and pin-shape microstructure can be controlled by additional amounts of additives. From Raman spectroscopy analysis, the soot formation of carbon black’s micro and nanostructure are acceptable to simulate diesel soot particles. In line with these results, carbon black was successfully used as a substitute of real engine soot in soot kinetics reactivity. In addition, the oxidation kinetics of soot particles on mullite and acicular mullite membrane were investigated by using tight contact in isothermal and loose contact in non-isothermal thermo-gravimetric analysis. The calculated apparent activation energies of soot oxidation with isothermal technique on mullite and acicular mullite membrane are approximately 213 and 141 kJ/mol while those values calculated with non-isothermal technique are 118 and 76 kJ/mol, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Yang J, Stewart M, Maupin G, et.al. (2009) Single wall diesel particulate filter (DPF) filtration efficiency studies using laboratory generated particles. Chem. Eng. Sci. 64(8): 1625- 1634. https://doi.org/10.1016/j.ces.2008.12.011

  2. Mohankumar, S., Senthilkumar, P.: Particulate matter formation and its control methodologies for diesel engine: a comprehensive review. Renew Sustain Energy Rev. 80, 1277–1238 (2017). https://doi.org/10.1016/j.rser.2017.05.133

    Article  Google Scholar 

  3. Burtscher, H.: Physical characterization of particulate emissions from diesel engines: a review. J. Aerosol. Sci. 36(7), 896–932 (2005). https://doi.org/10.1016/j.jaerosci.2004.12.001

    Article  Google Scholar 

  4. Kittelson, D.B.: Engines and Nanoparticles: A Review. J. Aerosol. Sci. 29(5-6), 575–588 (1998). https://doi.org/10.1016/S0021-8502(97)10037-4

    Article  Google Scholar 

  5. Hanamura, K., Karin, P., Cui, L., Rubio, P., Tsuruta, T., Tanaka, T., Suzuki, T.: Micro- and macroscopic visualization of particulate matter trapping and regeneration processes in wall-flow diesel particulate filters. Int. J. Engine Res. 10(5), 305–321 (2009). https://doi.org/10.1243/14680874JER04209

    Article  Google Scholar 

  6. Alder, J.: Ceramic Diesel Particulate Filters. Int. J. Appl. Ceram. Tec. 2(6), 429–439 (2005). https://doi.org/10.1111/j.1744-7402.2005.02044.x

    Article  Google Scholar 

  7. Oki, H., Karin, P., and Hanamura, K.: Visualization of oxidation of soot nanoparticles trapped on a diesel particulate membrane filter. SAE Technical Paper No.2011-01-0602 (2011). https://doi.org/10.4271/2011-01-0602

  8. Sirivaracha, S., Karin, P., Saenkhumvong, E., Chollacoop, N. and Hanamura, K. (2019) Impact of TiO2 and V2O5 on sintered mullite porous microstructure and soot oxidation kinetics using SEM and TGA. SAE Technical Paper No. 2019-01-1407. https://doi.org/10.4271/2019-01-1407

  9. Li, C.G., Pyzik, A.J.: Application of porous acicular mullite for filtration of diesel nano particulates, developments in porous, biological and geopolymer ceramics. Ceramic Eng. Sci. Proc. 28(9), 27–40 (2005). https://doi.org/10.1002/9780470339749.ch3

    Article  Google Scholar 

  10. Zuberi, B., Liu, J.J., Pillai, S.C., et al: Advanced high porosity ceramics honeycomb wall flow filters. SAE Technical Paper No. 2008-01-0623. (2008). https://doi.org/10.4271/2008-01-0623

  11. Schneider, H., Schreuer, J., Hildmann, B.: Structure and properties of mullite – a review. J. Eur. Ceram. 28(2), 329–344 (2008). https://doi.org/10.1016/j.jeurceramsoc.2007.03.017

    Article  Google Scholar 

  12. Cao, J., Dong, X., Li, L., Dong, Y., Hampshire, S.: Recycling of waste fly ash for production of porous mullite ceramic membrane supports with increased porosity. J. Eur. Ceram. 34(13), 3181–3194 (2014). https://doi.org/10.1016/j.jeurceramsoc.2014.04.011

    Article  Google Scholar 

  13. Pyzik, A.J., Todd, C.S., Han, C.: Formation mechanism and microstructure development in acicular mullite ceramics fabricated by controlled decomposition of fluorotopaz. J. Eur. Ceram. 28(2), 383–391 (2008). https://doi.org/10.1016/j.jeurceramsoc.2007.03.021

    Article  Google Scholar 

  14. Karin, P. and Hanamura, K.: Particulate matter trapping and oxidation on catalyst-membrane. SAE Technical Paper No.2010-01-0808. (2010). https://doi.org/10.4271/2010-01-0808

  15. Karin, P., Boonsakda, J., Siricholathum, K., Saenkhumvong, E., Charoenphonphanich, C., Hanamura, K.: Morphology and oxidation kinetics of ci engine’s biodiesel particulate matters on cordierite diesel particualte filters using TGA. Int. J. Automot. Technol. 18(1), 31–40 (2017). https://doi.org/10.1007/s12239-017-0003-y

    Article  Google Scholar 

  16. Neeft, J.P.A., Nijhuis, T.X., Smakman, E., Makkee, M., Moulijn, J.A.: Kinetics of the oxidation of diesel soot. Fuel. 76(12), 1129–1136 (1997). https://doi.org/10.1016/S0016-2361(97)00119-1

    Article  Google Scholar 

  17. Atribak, I., Bueno-Lopez, A., Garcia-Garcia, A.: Uncatalysed and catalysed soot combustion under NOx + O2: real diesel versus model soots. Combust Flame. 157(11), 2086–2094 (2010). https://doi.org/10.1016/j.combustflame.2010.04.018

    Article  Google Scholar 

  18. ASTM C20-00: Standard test methods for apparent porosity, water absorption, apparent specific gravity, and bulk density of burned refractory brick and shapes by boiling water. (2005).  https://doi.org/10.1520/C0020-00R10

  19. Fino, D., Bensaid, S., Piumetti, M., Russo, N.: A review on the catalyst combustion of soot in diesel partiulate filters for automotive applications: from powder catalysts to structured reactors. Appl. Catal. A-Gen. 509, 75–96 (2016). https://doi.org/10.1016/j.apcata.2015.10.016

    Article  Google Scholar 

  20. Karin, P., Borhanipour, M., Songsaengchan, Y., Laosuwan, S., Charoenphonphanich, C., Chollacoop, N., Hanamura, K.: Oxidation kinetics on small ci engine’s biodiesel particulate matter. Int. J. Automot. Technol. 16(2), 211–219 (2015). https://doi.org/10.1007/s12239-015-0023-4

    Article  Google Scholar 

  21. Chen, Z., Suchech, S., Faber, K.T.: A Hierarchical study of the mechanical properties of gypsum. J. Mater. Sci. 45, 4444–4453 (2010). https://doi.org/10.1007/s10853-010-4527-z

    Article  Google Scholar 

  22. Karin, P., Cui, L., Rubio, P., Tsuruta, T. and Hanamura, K.: Microscopic visualization of pm trapping and regeneration in micro-structural pores of a DPF wall. SAE Technical Paper No.2009-01-1476. (2009). https://doi.org/10.4271/2009-01-1476

  23. Vyazovkin, S., Wight, C.A.: Isothermal and nonisothermal reaction kinetics in solids: in search of ways toward consensus. J. Phys. Chem. A. 101(44), 8279–8284 (1997). https://doi.org/10.1021/jp971889h

    Article  Google Scholar 

Download references

Funding

This work is funded by the Thailand Research Fund, RRi-PHD57I0027.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Preechar Karin.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saenkhumvong, E., Karin, P., Win, S.Z. et al. Influence of V2O5 and AlF3 on Microstructure of Acicular Mullite Diesel Particulate Filter Along with Soot Oxidation Kinetics. Emiss. Control Sci. Technol. 7, 287–301 (2021). https://doi.org/10.1007/s40825-021-00201-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40825-021-00201-6

Keywords

Navigation