Skip to main content
Log in

Synthesis and Study of Bimetallic Pd-Rh System Supported on Zirconia-Doped Alumina as a Component of Three-way Catalysts

  • Special Issue: In Recognition of Professor Wolfgang Grünert's Contributions to the Science and Fundamentals of Selective Catalytic Reduction of NOx
  • Published:
Emission Control Science and Technology Aims and scope Submit manuscript

Abstract

The present work is aimed at preparation and detailed characterization of the Pd-Rh/γ-Al2O3-ZrO2 composition used as a component of three-way catalysts. Physicochemical properties, such as specific surface area, morphology, secondary structure, dispersity and chemical state of active components, and thermal stability along with catalytic activity were studied within this research. Textural parameters of the samples were examined using low-temperature nitrogen adsorption. Analysis of the morphology and secondary structure was performed by means of electron microscopy. Concentration of metals located on the surface and accessible for the reagents was estimated using test reaction of ethane hydrogenolysis. Method of X-ray photoelectron spectroscopy was applied to investigate the chemical state of active components. Catalytic performance and thermal stability of the samples were tested in a prompt thermal aging regime using CO oxidation reaction as a criterion for in situ characterization of the catalyst state. It was found that both these characteristics strongly depend on the nature and composition of the precursors used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Heck, R.M., Farrauto, R.J., Gulati, S.T.: Catalytic Air Pollution Control. (2009)

  2. Twigg, M.V.: Catalytic control of emissions from cars. Catal. Today. 163(1), 33–41 (2011). https://doi.org/10.1016/j.cattod.2010.12.044

    Article  Google Scholar 

  3. Zheng, Q., Farrauto, R., Deeba, M.: Part II: oxidative thermal aging of Pd/Al2O3 and Pd/CexOy-ZrO2 in automotive three way catalysts: the effects of fuel shutoff and attempted fuel rich regeneration. Catalysts. 5(4), 1797–1814 (2015). https://doi.org/10.3390/catal5041797

    Article  Google Scholar 

  4. Shelef, M., Graham, G.W.: Why rhodium in automotive three-way catalysts? Catal. Rev. 36(3), 433–457 (2006). https://doi.org/10.1080/01614949408009468

    Article  Google Scholar 

  5. Hangas, J., Chen, A.E.: Comparative analytical study of two Pt–Rh three-way catalysts. Catal. Lett. 108(1–2), 103–111 (2006). https://doi.org/10.1007/s10562-006-0016-z

    Article  Google Scholar 

  6. Zheng, Q., Farrauto, R., Deeba, M., Valsamakis, I.: Part I: a comparative thermal aging study on the regenerability of Rh/Al2O3 and Rh/CexOy-ZrO2 as model catalysts for automotive three way catalysts. Catalysts. 5(4), 1770–1796 (2015). https://doi.org/10.3390/catal5041770

    Article  Google Scholar 

  7. Baidya, T.: Synthesis, structure and redox catalytic properties of Pt and Pd ion substituted Ce1-xMxO2(M= Ti, Zr & Hf) oxygen storage capacity nano-materials. Indian Institute of Science (2007)

  8. Mei, D., Kwak, J.H., Hu, J., Cho, S.J., Szanyi, J., Allard, L.F., Peden, C.H.F.: Unique role of anchoring penta-coordinated Al3+ sites in the sintering of γ-Al2O3-supported Pt catalysts. The Journal of Physical Chemistry Letters. 1(18), 2688–2691 (2010). https://doi.org/10.1021/jz101073p

    Article  Google Scholar 

  9. Busca, G., Finocchio, E., Escribano, V.S.: Infrared studies of CO oxidation by oxygen and by water over Pt/Al2O3 and Pd/Al2O3 catalysts. Appl. Catal. B Environ. 113-114, 172–179 (2012). https://doi.org/10.1016/j.apcatb.2011.11.035

    Article  Google Scholar 

  10. Shan, S., Petkov, V., Prasai, B., Wu, J., Joseph, P., Skeete, Z., Kim, E., Mott, D., Malis, O., Luo, J., Zhong, C.-J.: Catalytic activity of bimetallic catalysts highly sensitive to the atomic composition and phase structure at the nanoscale. Nanoscale. 7(45), 18936–18948 (2015). https://doi.org/10.1039/c5nr04535e

    Article  Google Scholar 

  11. De Clercq, A., Margeat, O., Sitja, G., Henry, C.R., Giorgio, S.: Core–shell Pd–Pt nanocubes for the CO oxidation. J. Catal. 336, 33–40 (2016). https://doi.org/10.1016/j.jcat.2016.01.005

    Article  Google Scholar 

  12. Kobayashi, H., Kusada, K., Kitagawa, H.: Creation of novel solid-solution alloy nanoparticles on the basis of density-of-states engineering by interelement fusion. Acc. Chem. Res. 48(6), 1551–1559 (2015). https://doi.org/10.1021/ar500413e

    Article  Google Scholar 

  13. Fernandes, V.R., Bossche, M.V.D., Knudsen, J., Farstad, M.H., Gustafson, J., Venvik, H.J., Grönbeck, H., Borg, A.: Reversed hysteresis during CO oxidation over Pd75Ag25(100). ACS Catalysis. 6(7), 4154–4161 (2016). https://doi.org/10.1021/acscatal.6b00658

    Article  Google Scholar 

  14. Cai, F., Yang, L., Shan, S., Mott, D., Chen, B., Luo, J., Zhong, C.-J.: Preparation of PdCu alloy nanocatalysts for nitrate hydrogenation and carbon monoxide oxidation. Catalysts. 6(7), (2016). https://doi.org/10.3390/catal6070096

    Article  Google Scholar 

  15. Shang, H., Wang, Y., Cui, Y., Fang, R., Hu, W., Gong, M., Chen, Y.: Catalytic performance of Pt–Rh/CeZrYLa+LaAl with stoichiometric natural gas vehicles emissions. Chin. J. Catal. 36(3), 290–298 (2015). https://doi.org/10.1016/s1872-2067(14)60270-9

    Article  Google Scholar 

  16. Plyusnin, P.E., Slavinskaya, E.M., Kenzhin, R.M., Kirilovich, A.K., Makotchenko, E.V., Stonkus, O.A., Shubin, Y.V., Vedyagin, A.A.: Synthesis of bimetallic AuPt/CeO2 catalysts and their comparative study in CO oxidation under different reaction conditions. React. Kinet. Mech. Catal. 127(1), 69–83 (2019). https://doi.org/10.1007/s11144-019-01545-5

    Article  Google Scholar 

  17. Shubin, Y.V., Vedyagin, A.A., Plyusnin, P.E., Kirilovich, A.K., Kenzhin, R.M., Stoyanovskii, V.O., Korenev, S.V.: The peculiarities of Au–Pt alloy nanoparticles formation during the decomposition of double complex salts. J. Alloys Compd. 740, 935–940 (2018). https://doi.org/10.1016/j.jallcom.2017.12.127

    Article  Google Scholar 

  18. Hilli, Y., Kinnunen, N.M., Suvanto, M., Savimäki, A., Kallinen, K., Pakkanen, T.A.: Preparation and characterization of Pd–Ni bimetallic catalysts for CO and C3H6 oxidation under stoichiometric conditions. Appl. Catal. A Gen. 497, 85–95 (2015). https://doi.org/10.1016/j.apcata.2015.03.004

    Article  Google Scholar 

  19. Shipitcyna, A., Kinnunen, N.M., Hilli, Y., Suvanto, M., Pakkanen, T.A.: Characterization and activity of Pd–Ir catalysts in CO and C3H6 oxidation under stoichiometric conditions. Top. Catal. 59(13–14), 1097–1103 (2016). https://doi.org/10.1007/s11244-016-0628-5

    Article  Google Scholar 

  20. Vedyagin, A.A., Volodin, A.M., Kenzhin, R.M., Stoyanovskii, V.O., Shubin, Y.V., Plyusnin, P.E., Mishakov, I.V.: Effect of metal-metal and metal-support interaction on activity and stability of Pd-Rh/alumina in CO oxidation. Catal. Today. 293-294, 73–81 (2017). https://doi.org/10.1016/j.cattod.2016.10.010

    Article  Google Scholar 

  21. Vedyagin, A.A., Stoyanovskii, V.O., Plyusnin, P.E., Shubin, Y.V., Slavinskaya, E.M., Mishakov, I.V.: Effect of metal ratio in alumina-supported Pd-Rh nanoalloys on its performance in three way catalysis. J. Alloys Compd. 749, 155–162 (2018). https://doi.org/10.1016/j.jallcom.2018.03.250

    Article  Google Scholar 

  22. Wu, X., Xu, L., Weng, D.: The thermal stability and catalytic performance of Ce-Zr promoted Rh-Pd/γ-Al2O3 automotive catalysts. Appl. Surf. Sci. 221(1–4), 375–383 (2004). https://doi.org/10.1016/s0169-4332(03)00938-3

    Article  Google Scholar 

  23. He, X., Sun, J., Huan, Y., Hu, J., Yang, D.: Influence of Al2O3/CeZrAl composition on the catalytic behavior of Pd/Rh catalyst. J. Rare Earths. 28(1), 59–63 (2010). https://doi.org/10.1016/s1002-0721(09)60051-x

    Article  Google Scholar 

  24. Bounechada, D., Groppi, G., Forzatti, P., Kallinen, K., Kinnunen, T.: Enhanced methane conversion under periodic operation over a Pd/Rh based TWC in the exhausts from NGVs. Top. Catal. 56(1–8), 372–377 (2013). https://doi.org/10.1007/s11244-013-9982-8

    Article  Google Scholar 

  25. Kang, S.B., Han, S.J., Nam, I.-S., Cho, B.K., Kim, C.H., Oh, S.H.: Detailed reaction kinetics for double-layered Pd/Rh bimetallic TWC monolith catalyst. Chem. Eng. J. 241, 273–287 (2014). https://doi.org/10.1016/j.cej.2013.12.039

    Article  Google Scholar 

  26. Oh, S.H., Triplett, T.: Reaction pathways and mechanism for ammonia formation and removal over palladium-based three-way catalysts: multiple roles of CO. Catal. Today. 231, 22–32 (2014). https://doi.org/10.1016/j.cattod.2013.11.048

    Article  Google Scholar 

  27. Renzas, J.R., Huang, W., Zhang, Y., Grass, M.E., Hoang, D.T., Alayoglu, S., Butcher, D.R., Tao, F., Liu, Z., Somorjai, G.A.: Rh1−xPdxnanoparticle composition dependence in CO oxidation by oxygen: catalytic activity enhancement in bimetallic systems. Phys. Chem. Chem. Phys. 13(7), 2556–2562 (2011). https://doi.org/10.1039/c0cp01858a

    Article  Google Scholar 

  28. Renzas, J.R., Huang, W., Zhang, Y., Grass, M.E., Somorjai, G.A.: Rh1−x Pd x nanoparticle composition dependence in CO oxidation by NO. Catal. Lett. 141(2), 235–241 (2010). https://doi.org/10.1007/s10562-010-0462-5

    Article  Google Scholar 

  29. Stoyanovskii, V.O., Vedyagin, A.A., Aleshina, G.I., Volodin, A.M., Noskov, A.S.: Characterization of Rh/Al2O3 catalysts after calcination at high temperatures under oxidizing conditions by luminescence spectroscopy and catalytic hydrogenolysis. Appl. Catal. B Environ. 90(1–2), 141–146 (2009). https://doi.org/10.1016/j.apcatb.2009.03.003

    Article  Google Scholar 

  30. Stoyanovskii, V.O., Vedyagin, A.A., Volodin, A.M., Kenzhin, R.M., Shubin, Y.V., Plyusnin, P.E., Mishakov, I.V.: Peculiarity of Rh bulk diffusion in La-doped alumina and its impact on CO oxidation over Rh/Al 2 O 3. Catal. Commun. 97, 18–22 (2017). https://doi.org/10.1016/j.catcom.2017.04.013

    Article  Google Scholar 

  31. Stoyanovskii, V.O., Vedyagin, A.A., Volodin, A.M., Kenzhin, R.M., Bespalko, Y.N., Plyusnin, P.E., Shubin, Y.V.: Optical spectroscopy of Rh3+ ions in the lanthanum-aluminum oxide systems. J. Lumin. 204, 609–617 (2018). https://doi.org/10.1016/j.jlumin.2018.08.070

    Article  Google Scholar 

  32. Stoyanovskii, V.O., Vedyagin, A.A., Volodin, A.M., Kenzhin, R.M., Slavinskaya, E.M., Plyusnin, P.E., Shubin, Y.V.: Optical spectroscopy methods in the estimation of the thermal stability of bimetallic Pd–Rh/Al2O3 three-way catalysts. Top. Catal. 62(1–4), 296–304 (2018). https://doi.org/10.1007/s11244-018-1112-1

    Article  Google Scholar 

  33. Vedyagin, A.A., Gavrilov, M.S., Volodin, A.M., Stoyanovskii, V.O., Slavinskaya, E.M., Mishakov, I.V., Shubin, Y.V.: Catalytic purification of exhaust gases over Pd–Rh alloy catalysts. Top. Catal. 56(11), 1008–1014 (2013). https://doi.org/10.1007/s11244-013-0064-8

    Article  Google Scholar 

  34. Vedyagin, A.A., Volodin, A.M., Stoyanovskii, V.O., Kenzhin, R.M., Slavinskaya, E.M., Mishakov, I.V., Plyusnin, P.E., Shubin, Y.V.: Stabilization of active sites in alloyed Pd–Rh catalysts on γ-Al2O3 support. Catal. Today. 238, 80–86 (2014). https://doi.org/10.1016/j.cattod.2014.02.056

    Article  Google Scholar 

  35. Vedyagin, A.A., Volodin, A.M., Stoyanovskii, V.O., Kenzhin, R.M., Plyusnin, P.E., Shubin, Y.V., Mishakov, I.V.: Effect of alumina phase transformation on stability of low-loaded Pd-Rh catalysts for CO oxidation. Top. Catal. 60(1–2), 152–161 (2016). https://doi.org/10.1007/s11244-016-0726-4

    Article  Google Scholar 

  36. Vedyagin, A.A., Plyusnin, P.E., Rybinskaya, A.A., Shubin, Y.V., Mishakov, I.V., Korenev, S.V.: Synthesis and study of Pd-Rh alloy nanoparticles and alumina-supported low-content Pd-Rh catalysts for CO oxidation. Mater. Res. Bull. 102, 196–202 (2018). https://doi.org/10.1016/j.materresbull.2018.02.038

    Article  Google Scholar 

  37. Vedyagin, A.A., Shubin, Y.V., Kenzhin, R.M., Plyusnin, P.E., Stoyanovskii, V.O., Volodin, A.M.: Prospect of using nanoalloys of partly miscible rhodium and palladium in three-way catalysis. Top. Catal. 62(1–4), 305–314 (2018). https://doi.org/10.1007/s11244-018-1093-0

    Article  Google Scholar 

  38. Vedyagin, A.A., Stoyanovskii, V.O., Kenzhin, R.M., Slavinskaya, E.M., Plyusnin, P.E., Shubin, Y.V.: Purification of gasoline exhaust gases using bimetallic Pd–Rh/δ-Al2O3 catalysts. React. Kinet. Mech. Catal. 127(1), 137–148 (2019). https://doi.org/10.1007/s11144-019-01573-1

    Article  Google Scholar 

  39. Ozawa, M., Okouchi, T., Haneda, M.: Three way catalytic activity of thermally degenerated Pt/Al2O3 and Pt/CeO2–ZrO2 modified Al2O3 model catalysts. Catal. Today. 242, 329–337 (2015). https://doi.org/10.1016/j.cattod.2014.06.013

    Article  Google Scholar 

  40. Papavasiliou, A., Tsetsekou, A., Matsouka, V., Konsolakis, M., Yentekakis, I.V.: An investigation of the role of Zr and La dopants into Ce1−x−yZrxLayOδ enriched γ-Al2O3 TWC washcoats. Appl. Catal. A Gen. 382(1), 73–84 (2010). https://doi.org/10.1016/j.apcata.2010.04.025

    Article  Google Scholar 

  41. Haneda, M., Tomida, Y., Sawada, H., Hattori, M.: Effect of rare earth additives on the catalytic performance of Rh/ZrO2 three-way catalyst. Top. Catal. 59(10–12), 1059–1064 (2016). https://doi.org/10.1007/s11244-016-0590-2

    Article  Google Scholar 

  42. Haneda, M., Tomida, Y., Takahashi, T., Azuma, Y., Fujimoto, T.: Three-way catalytic performance and change in the valence state of Rh in Y- and Pr-doped Rh/ZrO2 under lean/rich perturbation conditions. Catal. Commun. 90, 1–4 (2017). https://doi.org/10.1016/j.catcom.2016.11.009

    Article  Google Scholar 

  43. Vedyagin, A., Volodin, A., Kenzhin, R., Chesnokov, V., Mishakov, I.: CO oxidation over Pd/ZrO2 catalysts: role of support’s donor sites. Molecules. 21(10), 1289 (2016). https://doi.org/10.3390/molecules21101289

    Article  Google Scholar 

  44. Kostin, G.A., Plyusnin, P.E., Filatov, E.Y., Kuratieva, N.V., Vedyagin, A.A., Kal’nyi, D.B.: Double complex salts [PdL4][RuNO(NO2)4OH] (L = NH3, Py) synthesis, structure and preparation of bimetallic metastable solid solution Pd0.5Ru0.5. Polyhedron. 159, 217–225 (2019). https://doi.org/10.1016/j.poly.2018.11.065

    Article  Google Scholar 

  45. Venediktov, A.B., Korenev, S.V., Khranenko, S.P., Tkachev, S.V., Plyusnin, P.E., Mamonov, S.N., Ivanova, L.V., Vostrikov, V.A.: Properties of nitric acid palladium solutions with a high metal concentration. Russ. J. Appl. Chem. 80(5), 695–704 (2007). https://doi.org/10.1134/s1070427207050023

    Article  Google Scholar 

  46. Chernyaev, I.I.: Synthesis of Complex Compounds of Platinum Group Metals. Nauka, Moscow (1964)

    Google Scholar 

  47. Fedorov, I.A.: Rhodium. Nauka, Moscow (1966)

    Google Scholar 

  48. Rybinskaya, A.A., Plyusnin, P.E., Bykova, E.A., Gromilov, S.A., Shubin, Y.V., Korenev, S.V.: Double complex salts [Pd(NH3)4]3[Rh(NO2)6]2, [Pd(NH3)4]3[Rh(NO2)6]2·H2O as promising precursors to prepare Pd-Rh nanoalloys. J. Struct. Chem. 53(3), 527–533 (2012). https://doi.org/10.1134/s002247661203016x

    Article  Google Scholar 

  49. Nefedov, V.I.: X-Ray Photoelectron Spectroscopy of Chemical Compounds: Handbook. Khimiya, Moscow (1984)

    Google Scholar 

  50. Moulder, J.F., Stickle, W.F., Sobol, P.E., Bomben, K.D.: Handbook of X-Ray Photoelectron Spectroscopy. Perkin-Elmer Corporation, Eden Prairie (1992)

    Google Scholar 

  51. Vedyagin, A.A., Volodin, A.M., Stoyanovskii, V.O., Mishakov, I.V., Medvedev, D.A., Noskov, A.S.: Characterization of active sites of Pd/Al2O3 model catalysts with low Pd content by luminescence, EPR and ethane hydrogenolysis. Applied Catalysis B: Environmental. 103(3–4), 397–403 (2011). https://doi.org/10.1016/j.apcatb.2011.02.002

    Article  Google Scholar 

  52. Behafarid, F., Roldan Cuenya, B.: Towards the understanding of sintering phenomena at the nanoscale: geometric and environmental effects. Top. Catal. 56(15–17), 1542–1559 (2013). https://doi.org/10.1007/s11244-013-0149-4

    Article  Google Scholar 

  53. Morgan, K., Goguet, A., Hardacre, C.: Metal redispersion strategies for recycling of supported metal catalysts: a perspective. ACS Catal. 5(6), 3430–3445 (2015). https://doi.org/10.1021/acscatal.5b00535

    Article  Google Scholar 

  54. Lupescu, J.A., Schwank, J.W., Dahlberg, K.A., Seo, C.Y., Fisher, G.B., Peczonczyk, S.L., Rhodes, K., Jagner, M.J., Haack, L.P.: Pd model catalysts: effect of aging environment and lean redispersion. Appl. Catal. B Environ. 183, 343–360 (2016). https://doi.org/10.1016/j.apcatb.2015.10.018

    Article  Google Scholar 

  55. He, J.J., Wang, C.X., Zheng, T.T., Zhao, Y.K.: Thermally induced deactivation and the corresponding strategies for improving durability in automotive three-way catalysts. Johnson Matthey Technology Review. 60(3), 196–203 (2016). https://doi.org/10.1595/205651316x691960

    Article  Google Scholar 

  56. Seo, C.Y., Chen, X.Y., Sun, K., Allard, L.F., Fisher, G.B., Schwank, J.W.: Palladium redispersion at high temperature within the Pd@SiO2 core@shell structure. Catal. Commun. 108, 73–76 (2018). https://doi.org/10.1016/j.catcom.2018.01.027

    Article  Google Scholar 

  57. Sinfelt, J., Yates, D.J.C.: Catalytic hydrogenolysis of ethane over the noble metals of group VIII. J. Catal. 8(1), 82–90 (1967). https://doi.org/10.1016/0021-9517(67)90284-9

    Article  Google Scholar 

  58. Yates, D., Sinfelt, J.H.: The catalytic activity of rhodium in relation to its state of dispersion. J. Catal. 8(4), 348–358 (1967). https://doi.org/10.1016/0021-9517(67)90331-4

    Article  Google Scholar 

  59. Sinfelt, J.: Kinetics of ethane hydrogenolysis. J. Catal. 27(3), 468–471 (1972). https://doi.org/10.1016/0021-9517(72)90188-1

    Article  Google Scholar 

  60. Sinfelt, J.H.: Specificity in catalytic hydrogenolysis by metals. In. Advances in Catalysis, pp. 91–119. (1973)

    Google Scholar 

  61. Fernandes, D.M., Alcover Neto, A., Cardoso, M.J.B., Zotin, F.M.Z.: Commercial automotive catalysts: chemical, structural and catalytic evaluation, before and after aging. Catal. Today. 133-135, 574–581 (2008). https://doi.org/10.1016/j.cattod.2007.12.064

    Article  Google Scholar 

  62. Kang, S.B., Han, S.J., Nam, S.B., Nam, I.-S., Cho, B.K., Kim, C.H., Oh, S.H.: Effect of aging atmosphere on thermal sintering of modern commercial TWCs. Top. Catal. 56(1–8), 298–305 (2013). https://doi.org/10.1007/s11244-013-9970-z

    Article  Google Scholar 

  63. Ramanathan, K., Oh, S.H.: Modeling and analysis of rapid catalyst aging cycles. Chem. Eng. Res. Des. 92(2), 350–361 (2014). https://doi.org/10.1016/j.cherd.2013.06.020

    Article  Google Scholar 

  64. Chen, X., Cheng, Y., Seo, C.Y., Schwank, J.W., McCabe, R.W.: Aging, re-dispersion, and catalytic oxidation characteristics of model Pd/Al2O3 automotive three-way catalysts. Appl. Catal. B Environ. 163, 499–509 (2015). https://doi.org/10.1016/j.apcatb.2014.08.018

    Article  Google Scholar 

  65. Alikin, E.A., Denisov, S.P., Vedyagin, A.A.: Partial regeneration of model TWC after high-temperature aging on engine bench. Top. Catal. 62(1–4), 324–330 (2018). https://doi.org/10.1007/s11244-018-1114-z

    Article  Google Scholar 

  66. Lupescu, J.A., Schwank, J.W., Fisher, G.B., Hangas, J., Peczonczyk, S.L., Paxton, W.A.: Pd model catalysts: effect of air pulse length during redox aging on Pd redispersion. Appl. Catal. B Environ. 223, 76–90 (2018). https://doi.org/10.1016/j.apcatb.2017.07.055

    Article  Google Scholar 

  67. Peuckert, M.: XPS study on surface and bulk palladium oxide, its thermal stability, and a comparison with other noble metal oxides. J. Phys. Chem. 89(12), 2481–2486 (1985). https://doi.org/10.1021/j100258a012

    Article  Google Scholar 

  68. Fleisch, T.H., Zajac, G.W., Schreiner, J.O., Mains, G.J.: An XPS study of the UV photoreduction of transition and noble metal oxides. Appl. Surf. Sci. 26(4), 488–497 (1986). https://doi.org/10.1016/0169-4332(86)90120-0

    Article  Google Scholar 

  69. Fox, E.B., Lee, A.F., Wilson, K., Song, C.: In-situ XPS study on the reducibility of Pd-promoted cu/CeO2 catalysts for the oxygen-assisted water-gas-shift reaction. Top. Catal. 49(1–2), 89–96 (2008). https://doi.org/10.1007/s11244-008-9063-6

    Article  Google Scholar 

  70. Luo, J.-Y., Meng, M., Xian, H., Tu, Y.-B., Li, X.-G., Ding, T.: The nanomorphology-controlled palladium-support interaction and the catalytic performance of Pd/CeO2 catalysts. Catal. Lett. 133(3–4), 328–333 (2009). https://doi.org/10.1007/s10562-009-0194-6

    Article  Google Scholar 

  71. Devener, B.V., Anderson, S.L., Shimizu, T., Wang, H., Nabity, J., Engel, J., Yu, J., Wickham, D., Williams, S.: In situ generation of Pd/PdO nanoparticle methane combustion catalyst: correlation of particle surface chemistry with ignition. J. Phys. Chem. C. 113(48), 20632–20639 (2009). https://doi.org/10.1021/jp904317y

    Article  Google Scholar 

  72. Mason, M.G.: Electronic structure of supported small metal clusters. Phys. Rev. B. 27(2), 748–762 (1983). https://doi.org/10.1103/PhysRevB.27.748

    Article  Google Scholar 

  73. Weng-Sieh, Z., Gronsky, R., Bell, A.T.: Microstructural evolution of γ-alumina-supported Rh upon aging in air. J. Catal. 170(1), 62–74 (1997). https://doi.org/10.1006/jcat.1997.1738

    Article  Google Scholar 

  74. Suhonen, S., Valden, M., Hietikko, M., Laitinen, R., Savimäki, A., Härkönen, M.: Effect of Ce–Zr mixed oxides on the chemical state of Rh in alumina supported automotive exhaust catalysts studied by XPS and XRD. Appl. Catal. A Gen. 218(1–2), 151–160 (2001). https://doi.org/10.1016/s0926-860x(01)00636-6

    Article  Google Scholar 

  75. Peuckert, M.: A comparison of thermally and electrochemically prepared oxidation adlayers on rhodium: chemical nature and thermal stability. Surf. Sci. 141(2–3), 500–514 (1984). https://doi.org/10.1016/0039-6028(84)90145-6

    Article  Google Scholar 

  76. Burkhard, J., Schmidt, L.D.: Comparison of microstructures in oxidation and reduction: Rh and Ir particles on SiO2 and Al2O3*1. J. Catal. 116(1), 240–251 (1989). https://doi.org/10.1016/0021-9517(89)90089-4

    Article  Google Scholar 

  77. Beck, D.D., DiMaggio, C.L., Fisher, G.B.: Surface enrichment of Pt10Rh90(111). Surf. Sci. 297(3), 303–311 (1993). https://doi.org/10.1016/0039-6028(93)90219-a

    Article  Google Scholar 

  78. Tolia, A.A., Smiley, R.J., Delgass, W.N., Takoudis, C.G., Weaver, M.J.: Surface oxidation of rhodium at ambient pressures as probed by surface-enhanced Raman and X-ray photoelectron spectroscopies. J. Catal. 150(1), 56–70 (1994). https://doi.org/10.1006/jcat.1994.1322

    Article  Google Scholar 

Download references

Funding

The study was financially supported by the Ministry of Education and Science of the Russian Federation within the framework of subsidizing agreement of October 23, 2017 (No. 14.581.21.0028, unique agreement identifier RFMEFI58117X0028) of the Federal Target Program “Research and development in priority directions of the progress of the scientific and technological complex of Russia for the years 2014–2020.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksey A. Vedyagin.

Ethics declarations

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vedyagin, A.A., Kenzhin, R.M., Tashlanov, M.Y. et al. Synthesis and Study of Bimetallic Pd-Rh System Supported on Zirconia-Doped Alumina as a Component of Three-way Catalysts. Emiss. Control Sci. Technol. 5, 363–377 (2019). https://doi.org/10.1007/s40825-019-00133-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40825-019-00133-2

Keywords

Navigation