Skip to main content
Log in

Particulate Matter Production of Small Heat Source Depending on the Bark Content in Wood Pellets

  • Special Article from the ETH conference 2017
  • Published:
Emission Control Science and Technology Aims and scope Submit manuscript

Abstract

Wood pellets as biofuel are more and more used in small heat sources in Europe. Standard wood pellets are produced from wood sawdust without bark. The paper deals about the impact of bark in wood pellets on their properties and combustion process. Special attention in this work is paid to production of particulate matter during combustion of wood pellets depending on bark content. There were experimentally produced spruce wood pellet samples with 0, 1, 2, 5, 10, and 20% content of bark. The density, moisture content, calorific value, ash content, and ash fusion temperature were detected on produced samples. Then, the combustion took place in a small heat source which was tested on an experimental device designed for the measuring of heat output and emission production. Based on the achieved results, we can conclude that bark content in pellets has a significant impact not only on wood pellet properties but also on performance and environmental characteristics of pellets. The results showed that growing bark content has negative impact on wood pellet properties, mainly decrease calorific value and ash fusion temperature, and increase ash content. Growing bark content in wood pellets also decreased heat output of heat source and increased gas emissions and particulate matter production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Olsson, M.: Residential biomass combustion—emissions of organic compounds to air from wood pellets and other new alternatives. In [Online] Thesis for the Degree of Doctor of Philosophy, Göteborg, Sweden (2006)

  2. Demirbas, A.: Potential applications of renewable energy sources, biomass combustion problems in boiler power systems and combustion related environmental issues. Prog. Energy Combust. Sci. 31(2), 171–192 (2005). https://doi.org/10.1016/j.pecs.2005.02.002.

    Article  Google Scholar 

  3. Eskilsson, D., Rönbäck, M., Samuelsson, J., Tullin, C.: Optimisation of efficiency and emissions in pellet burners. Biomass Bioenergy. 27(6), 541–546 (2004)

    Article  Google Scholar 

  4. Yao, Q., Li, S., Xu, H., Zhou, J., Song, Q.: Studies on formation and control of combustion particulate matter in China: a review. Energy. 34(9), 1296–1309 (2009). https://doi.org/10.1016/j.energy.2009.03.013

    Article  Google Scholar 

  5. Weber, R., Szlek, A., Nosek, R.: Time-dependent combustion of solid fuels in a fixed-bed: measurements and mathematical modeling. Energy Fuels. 28(8), 4767–4774 (2013)

    Google Scholar 

  6. Martiník, L., Drastichová, V., Horák, J., Jankovská, Z., Krpec, K., Kubesa, P., Hopan, F., Kaličáková, Z.: Spalováni odpadní biomasy v malých zařízeních. Chemické listy. 108(2), 156–162 (2014)

    Google Scholar 

  7. Papučík, Š., Pilát, P., Chabadová, J., Medvecký, Š.: Produkcia tuhých znečisťujúcich látok PM 10 a PM 2,5 pri spaľovaní drevných peliet. Agrobioenergia. 4/2014. (2014)

  8. Dzurenda, L.: Model of heat load on the atmosphere by flue gases. Manuf Technol. 15(5), 809–814 (2015)

    Google Scholar 

  9. Dzurenda, L., Hroncová, E., Ladomerský, J.: Extensive operating expe-riments on the conversion of fuel-bound nitrogen into nitrogen oxides in the combustion of wood fuel. Forests. 8(1), 1–9 (2017). https://doi.org/10.3390/F8010001

    Google Scholar 

  10. Hroncová, E., Ladomerský, J., Valíček, J., Dzurenda, L. Combustion of biomass fuel and residues: emissions production perspective. (2016). www.intechopen.com/.../developments-in-combustion-technolog. https://doi.org/10.5772/63793

  11. Jandačka, J., Mičieta, J., Holubčík, M., Nosek, R.: Inovácie na zefektívnenie procesu spaľovania biomasy. EDIS, Žilina (2016)

    Google Scholar 

  12. Jandačka, J., Holubčík, M., Patsch, M., Vantúch, M.: Moderné zdroje tepla na vykurovanie. EDIS, Žilina (2016)

    Google Scholar 

  13. Soos, L., Kolejak, M., Urban, F.: Biomass—a Renewable Source of Energy (in Slovak). Vert, Bratislava (2012)

    Google Scholar 

  14. Jandacka, J., Malcho, M., Mikulik, M.: Biomass as a source of energy (in Slovak), vol. 241. Publishing house GEORG, Zilina (2007)

    Google Scholar 

  15. Dzurenda, L., Pnakovic, L.: Energy characteristic of biofuel—leaves falling down from hardwood trees in autumn (in Slovak). Acta Facultatis Xylologiae Zvolen. 57(1), 119–126 (2015)

    Google Scholar 

  16. Racko, V., Cunderlik, I.: Width, content and basic physical characteristics of beech bark on a mix offered for production of paper and cellulose (in Slovak). Selected Processes at the Wood Processing, IX. International Symposium. 65–73 (2011)

  17. Carnogurska, M., Prihoda, M., Kosko, M., Pyszko, R.: Verification of pollutant creation model at dendromass combustion. J. Mech. Sci. Technol. 26(12), 4161–4169 (2012)

    Article  Google Scholar 

  18. Filbakk, T., Jirjis, R., Nurmi, J., Hoibo, O.: The effect of bark content on quality parameters of scots pine (Pinus sylvestris L.) pellets. Biomass Bioenergy. 35, 3342–3349 (2011)

    Article  Google Scholar 

  19. Longauer, J., Luptak, O., Koska, P.: Gross calorific value and net calorific value of wood waste (in Slovak), VPA 5/1987, Zvolen. 61 (1988)

  20. Viglasky, J.: Biomass potential in the region and its accessibility for power engineering (in Slovak). Plynar. Vodar. Kurenar + Klimatizacia. 10(3), 38–42 (2012)

  21. Vitazek I., Tirol J.: Emissions from biomass combustion (in Slovak). Technika v technologiach agrosektora 2009, Slovenska polnohospodarska univerzita: Nitra. 73–79 (2009)

  22. Lu, J., Ren, X.: Analysis and discussion on formation and control of primary particulate matter generated from coal-fired power plants. J. Air Waste Manag. Assoc. 64(12), 1342–1351 (2014)

    Article  Google Scholar 

  23. Mitchell, E.J.S., Lea-Langton, A.R., Jones, J.M., Williams, A., Layden, P., Johnson, R.: The impact of fuel properties on the emissions from the combustion of biomass and other solid fuels in a fixed bed domestic stove. Fuel Process. Technol. 142, 115–123 (2016)

    Article  Google Scholar 

  24. Sarigiannis, Α., Karakitsios, P., Kermenidou, V.: Health impact and monetary cost of exposure to particulate matter emitted from biomass burning in large cities. Sci. Total Environ. 524–525(15), 319–330 (2015)

    Article  Google Scholar 

  25. STN 49 0108: Wood–density determination. (1993)

  26. STN EN 14774: Solid biofuels. Determination of moisture content. Oven dry method. Part 1: Total moisture. Reference method. (2009)

  27. STN EN 14918: Solid biofuels. Determination of net calorific value. (2009)

  28. STN EN ISO 18122: Solid biofuels. Determination of ash content. (2016)

  29. STN ISO 1171: Solid fuels—determination of ash. (2003)

  30. STN ISO 540: Hard coal and coke. Determination of ash fusion. (2010)

  31. STN ISO 9096: Air quality. Stationary source emissions. Manual determination of mass concentration of particulate matter. (2004)

  32. STN EN 303-5: Heating boilers. Part 5: Heating boilers for solid fuels, manually and automatically stoked, nominal heat output of up to 500 kW. Terminology, requirements, testing and marking. (2012)

Download references

Funding

This work was supported by the projects VEGA 1/0548/15 “The impact of bark content and additives on mechanical, energy and environmental characteristics of wood pellets” and APVV-15-0790 “Optimization of biomass combustion with low ash melting temperature.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Holubcik.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holubcik, M., Jandacka, J., Nosek, R. et al. Particulate Matter Production of Small Heat Source Depending on the Bark Content in Wood Pellets. Emiss. Control Sci. Technol. 4, 33–39 (2018). https://doi.org/10.1007/s40825-018-0081-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40825-018-0081-y

Keywords

Navigation