Z.Z. Fang, M.C. Koopman, H.T. Wang, Cemented tungsten carbide hardmetal—an introduction, in Comprehensive Hard Materials, ed. by D. Mari, L. Llanes, V.K. Sarin (Elsevier, Oxford, 2014), pp. 123–138. https://doi.org/10.1016/B978-0-08-096527-7.00004-0
Chapter
Google Scholar
L. Prakash, Introduction to hardmetals—fundamentals and general applications of hardmetals, in Comprehensive Hard Materials, ed. by D. Mari, L. Llanes, V.K. Sarin (Elsevier, Oxford, 2014), pp. 29–90. https://doi.org/10.1016/B978-0-08-096527-7.00002-7
Chapter
Google Scholar
R. Viswanadham, Science of Hard Materials (Springer, Berlin, 1983). https://doi.org/10.1007/978-1-4684-4319-6
Book
Google Scholar
A.V. Shatov, S.S. Ponomarev, S.A. Firstov, Hardness and deformation of hardmetals at room temperature, in Comprehensive Hard Materials, ed. by D. Mari, L. Llanes, V.K. Sarin (Elsevier, Oxford, 2014), pp. 647–699. https://doi.org/10.1016/B978-0-08-096527-7.00009-X
Chapter
Google Scholar
A.V. Shatov, S.S. Ponomarev, S.A. Firstov, Fracture and strength of hardmetals at room temperature, in Comprehensive Hard Materials, ed. by D. Mari, L. Llanes, V.K. Sarin (Elsevier, Oxford, 2014), pp. 301–343. https://doi.org/10.1016/B978-0-08-096527-7.00010-6
Chapter
Google Scholar
J.L. Sun, J. Zhao, F. Gong, X.Y. Ni, Z.L. Li, Development and application of WC-based alloys bonded with alternative binder phase. Crit. Rev. Solid. State. 44(3), 211–238 (2019). https://doi.org/10.1080/10408436.2018.1483320
Article
Google Scholar
A. Mukhopadhyay, B. Basu, Recent developments on WC-based bulk composites. J. Mater. Sci. 46(3), 571–589 (2011). https://doi.org/10.1007/s10853-010-5046-7
Article
Google Scholar
A. Krawitz, E. Drake, Residual stresses in cemented carbides—an overview. Int. J. Refract. Met. Hard Mater. 49, 27–35 (2015). https://doi.org/10.1016/j.ijrmhm.2014.07.018
Article
Google Scholar
A.D. Krawitz, E.F. Drake, Residual stresses, in Comprehensive Hard Materials, ed. by D. Mari, L. Llanes, V.K. Sarin (Elsevier, Oxford, 2014), pp. 385–404. https://doi.org/10.1016/B978-0-08-096527-7.00013-1
Chapter
Google Scholar
D. Mari, A.D. Krawitz, J.W. Richardson, W. Benoit, Residual stress in WC–Co measured by neutron diffraction. Mater. Sci. Eng., A 209(1–2), 197–205 (1996). https://doi.org/10.1016/0921-5093(95)10147-0
Article
Google Scholar
H.U. Sverdrup, K.V. Ragnarsdottir, D. Koca, Integrated modelling of the global cobalt extraction, supply, price and depletion of extractable resources using the world6 model. BioPhys. Econ. Resour. Qual. 2(1), 4 (2017). https://doi.org/10.1007/s41247-017-0017-0
Article
Google Scholar
S. Bastian, W. Busch, D. Kühnel, A. Springer, T. Meißner et al., Toxicity of tungsten carbide and cobalt-doped tungsten carbide nanoparticles in mammalian cells in vitro. Environ. Health Perspect. 117(4), 530 (2009). https://doi.org/10.1289/ehp.0800121
Article
Google Scholar
IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, Cobalt in hard metals and cobalt sulfate, gallium arsenide, indium phosphide and vanadium pentoxide. IARC monographs on the evaluation of carcinogenic risks to humans 86, 1 (2006)
Y. Kanemitsu, T. Nishimura, H. Yoshino, K. Takao, Y. Masumoto, Effect of hot isostatic pressing on binderless cemented carbide. Int. J. Refract. Met. Hard Mater. 1(2), 66–68 (1982)
Google Scholar
M.F. Ashby, The CES EduPack Resource Booklet 2: Material and Process Selection Charts (Granta Design Limited, Cambridge, 2009)
Google Scholar
K.M. Tsai, C.Y. Hsieh, H.H. Lu, Sintering of binderless tungsten carbide. Ceram. Int. 36(2), 689–692 (2010). https://doi.org/10.1016/j.ceramint.2009.10.017
Article
Google Scholar
J. Poetschke, V. Richter, T. Gestrich, Sintering behaviour of binderless tungsten carbide, in Euro PM2012 Congress and Exhibition, Basel, pp. 7–12, September 2012
D.J. Ma, Z.L. Kou, Y.J. Liu, Y.K. Wang, S.P. Gao et al., Sub-micron binderless tungsten carbide sintering behavior under high pressure and high temperature. Int. J. Refract. Met. Hard Mater. 54, 427–432 (2016). https://doi.org/10.1016/j.ijrmhm.2015.10.001
Article
Google Scholar
D. Demirskyi, A. Ragulya, D. Agrawal, Initial stage sintering of binderless tungsten carbide powder under microwave radiation. Ceram. Int. 37(2), 505–512 (2011). https://doi.org/10.1016/j.ceramint.2010.09.036
Article
Google Scholar
R.L. Coble, Sintering crystalline solids. I. Intermediate and final state diffusion models. J. Appl. Phys. 32(5), 787–792 (1961). https://doi.org/10.1063/1.1736107
Article
Google Scholar
R.L. Coble, Sintering crystalline solids. II. Experimental test of diffusion models in powder compacts. J. Appl. Phys. 32(5), 793–799 (1961). https://doi.org/10.1063/1.1736108
Article
Google Scholar
P. Boch, A. Leriche, Sintering and Microstructure of Ceramics, in Ceramic Materials: Processes, Properties, and Applicatons, ed. by P. Boch, J.C. Niepce (ISTE Ltd, New Porth Beach, 2007), pp. 55–94. https://doi.org/10.1002/9780470612415.ch3
Chapter
Google Scholar
C. Agte, R. Kohlermann, Hilfsmetallarme Hartmetallegierungen. Die Tech. 10, 686–689 (1957)
Google Scholar
T. Ungár, A. Borbély, G.R. Goren-Muginstein, S. Berger, A.R. Rosen, Particle-size, size distribution and dislocations in nanocrystalline tungsten-carbide. Nanostruct. Mater. 11(1), 103–113 (1911). https://doi.org/10.1016/S0965-9773(99)00023-9
Article
Google Scholar
V. Richter, G. Boden, M. Nebelung, M. Ruthendorf, Manufacturing and properties of superhard materials with ceramic sintering aids. Presentation of the COST503-3rd Round Annual Meeting, Subgroup Hard Materials, Hannover (1994)
V. Richter, Hard sintered materials made of nano-sized powders. Annual Report of Fraunhofer IKTS, pp. 44–45 (1995)
V. Richter, Manufacturing and properties of super-ultrafine hardmetals. Annual Report of Fraunhofer IKTS, pp. 46–47 (1997)
Editors of JOM, European powder metallurgy association awards innovation. J. Miner. Met. Mater. Soc. 53-3, 4–9 (2001)
Google Scholar
V. Richter, M. Ruthendorf, Wasserstrahlschneidhochdruckdüse. DE Patent No. 10052021 (2000)
J. Gurland, A study of the effect of carbon content on the structure and properties of sintered WC–Co alloys. Trans. AIME 200(3), 285–290 (1954)
Google Scholar
C.M. Fernandes, A.M.R. Senos, Cemented carbide phase diagrams: a review. Int. J. Refract. Met. Hard Mater. 29(4), 405–418 (2011). https://doi.org/10.1016/j.ijrmhm.2011.02.004
Article
Google Scholar
S.K. Li, J.Q. Li, Y. Li, F.S. Liu, W.Q. Ao, Dense pure binderless WC bulk material prepared by spark plasma sintering. Mater. Sci. Technol. 31(14), 1749–1756 (2015). https://doi.org/10.1179/1743284714Y.0000000753
Article
Google Scholar
A. Gubernat, P. Rutkowski, G. Grabowski, D. Zientara, Hot pressing of tungsten carbide with and without sintering additives. Int. J. Refract. Met. Hard Mater. 43, 193–199 (2014). https://doi.org/10.1016/j.ijrmhm.2013.12.002
Article
Google Scholar
A. Gubernat, L. Stobierski, Fractography of dense metal-like carbides sintered with carbon. Key Eng. Mater. 409, 287–290 (2009). https://doi.org/10.4028/www.scientific.net/KEM.409.287
Article
Google Scholar
J. Poetschke, V. Richter, T. Gestrich, A. Michaelis, Grain growth during sintering of tungsten carbide ceramics. Int. J. Refract. Met. Hard Mater. 43, 309–316 (2014). https://doi.org/10.1016/j.ijrmhm.2014.01.001
Article
Google Scholar
R.T. Fox, R. Nilsson, Binderless tungsten carbide carbon control with pressureless sintering. Int. J. Refract. Met. Hard Mater. 76, 82–89 (2018). https://doi.org/10.1016/j.ijrmhm.2018.05.020
Article
Google Scholar
A. Nino, K. Morimura, S. Sugiyama, H. Taimatsu, Effects of C and NbC additions on the microstructure and mechanical properties of binderless WC ceramics. Key Eng. Mater. 749, 205–210 (2017). https://doi.org/10.4028/www.scientific.net/KEM.749.205
Article
Google Scholar
A. Nino, K. Takahashi, S. Sugiyama, H. Taimatsu, Effects of carbon addition on microstructures and mechanical properties of binderless tungsten carbide. Mater. Trans. 53(8), 1475–1480 (2012). https://doi.org/10.2320/matertrans.M2012148
Article
Google Scholar
G.Z. Zhang, C. Wang, J.X. Zhang, M.L. Zhou, T.X. Zhou, Effects of mixed carbon content on spark plasma sintering of binder-free nanostructured WC cemented carbides. Rare Metals Cemented Carbides 33(2), 12–15 (2005)
Google Scholar
L. Girardini, M. Zadra, F. Casari, A. Molinariet, SPS, binderless WC powders, and the problem of sub carbide. Metal Powder Rep. 63(4), 18–22 (2008). https://doi.org/10.1016/S0026-0657(09)70039-6
Article
Google Scholar
S.I. Cha, S.H. Hong, Microstructures of binderless tungsten carbides sintered by spark plasma sintering process. Mater. Sci. Eng., A 356(1–2), 381–389 (2003). https://doi.org/10.1016/S0921-5093(03)00151-5
Article
Google Scholar
J.F. Zhao, T. Holland, C. Unuvar, Z.A. Munir, Sparking plasma sintering of nanometric tungsten carbide. Int. J. Refract. Met. Hard Mater. 27(1), 130–139 (2009). https://doi.org/10.1016/j.ijrmhm.2008.06.004
Article
Google Scholar
K. Kornaus, M. Rączka, A. Gubernat, D. Zientara, Pressureless sintering of binderless tungsten carbide. J. Eur. Ceram. Soc. 37(15), 4567–4576 (2017). https://doi.org/10.1016/j.jeurceramsoc.2017.06.008
Article
Google Scholar
Z.Z. Fang, H. Wang, Densification and grain growth during sintering of nanosized particles. Int. Mater. Rev. 53(6), 326–352 (2008). https://doi.org/10.1179/174328008X353538
MathSciNet
Article
Google Scholar
J. Poetschke, V. Richter, A. Michaelis, Fundamentals of sintering nanoscaled binderless hardmetals. Int. J. Refract. Met. Hard Mater. 49, 124–132 (2015). https://doi.org/10.1016/j.ijrmhm.2014.04.022
Article
Google Scholar
M.J. Mayo, Processing of nanocrystalline ceramics from ultrafine particles. Int. Mater. Rev. 41(3), 85–115 (1996). https://doi.org/10.1179/imr.1996.41.3.85
Article
Google Scholar
C.C. Koch, Nanostructured Materials: Processing, Properties and Applications (Noyes Publications, New York, 2002), pp. 173–217
Google Scholar
A.N. Kumar, M. Watabe, K. Kurokawa, The sintering kinetics of ultrafine tungsten carbide powders. Ceram. Int. 37(7), 2643–2654 (2011). https://doi.org/10.1016/j.ceramint.2011.04.011
Article
Google Scholar
S. Berger, R. Porat, R. Rosen, Nanocrystalline materials: a study of WC-based hard metals. Prog. Mater Sci. 42(1–4), 311–320 (1997). https://doi.org/10.1016/S0079-6425(97)00021-2
Article
Google Scholar
Z.Z. Fang, X. Wang, T. Ryu, K.S. Hwang, H.Y. Sohn, Synthesis, sintering, and mechanical properties of nanocrystalline cemented tungsten carbide—a review. Int. J. Refract. Met. Hard Mater. 27(2), 288–299 (2009). https://doi.org/10.1016/j.ijrmhm.2008.07.011
Article
Google Scholar
K. Brookes, Nano carbides make for low temperature sintering. Metal Powder Rep. 64(9), 26–32 (2009). https://doi.org/10.1016/S0026-0657(09)70217-6
Article
Google Scholar
M. Leiderman, O. Botstein, A. Rosen, Sintering microstructure and properties of sub-micron cemented carbide. Powder Metall. 40, 219 (1997). https://doi.org/10.1179/pom.1997.40.3.219
Article
Google Scholar
R. Porat, S. Berger, A. Rosen, Dilatometric study of the sintering mechanism of nanocrystalline cemented carbides. Nanostruct. Mater. 7(4), 429–436 (1996). https://doi.org/10.1016/0965-9773(96)00014-1
Article
Google Scholar
H. Ogawa, Y. Kataoka, Observation of sintering of several cemented carbides by a new high-temperature sintering dilatometer. High Temp.-High Press. 13(5), 481–494 (1981)
Google Scholar
G.R. Goren-Muginstein, S. Berger, A. Rosen, Sintering studies of nanocrystalline WC powder, in Proceedings of the 14th International Plansee Seminar, Metallwerk Plansee, Reutte, February 1997
H.C. Kim, I.J. Shon, J.E. Garay, Z.A. Munir, Consolidation and properties of binderless sub-micron tungsten carbide by field-activated sintering. Int. J. Refract. Met. Hard Mater. 22(6), 257–264 (2004). https://doi.org/10.1016/j.ijrmhm.2004.08.003
Article
Google Scholar
V.N. Chuvil’deev, Y.V. Blagoveshchenskiy, A.V. Nokhrin, M.S. Boldin, N.V. Sakharov et al., Spark plasma sintering of tungsten carbide nanopowders obtained through DC arc plasma synthesis. J. Alloy. Compd. 708, 547–561 (2017). https://doi.org/10.1016/j.jallcom.2017.03.035
Article
Google Scholar
V.N. Chuvil’deev, Y.V. Blagoveshchenskiy, A.V. Nokhrin, N.V. Sakharov, M.S. Boldin et al., Sparking plasma sintering of tungsten carbide nanopowders. Nanotechnol. Russ. 10(5–6), 434–448 (2015). https://doi.org/10.1134/S1995078015030040
Article
Google Scholar
B.W. Kwak, J.K. Yoon, I.J. Shon, Pulsed current activated rapid sintering of binderless nanostructured TiC and WC and their properties. J. Nanosci. Nanotechnol. 17(6), 4214–4217 (2017). https://doi.org/10.1166/jnn.2017.13388
Article
Google Scholar
I.J. Shon, Mechanical properties and rapid sintering of binderless nanostructured TiC and WC by high frequency induction heated sintering. J. Ceram. Process. Res. 17(7), 707–711 (2016)
Google Scholar
I.J. Shon, B.R. Kim, J.M. Doh, J.K. Yoon, K.D. Woo, Properties of nanostructured tungsten carbide and their rapid consolidation by pulsed current activated sintering. Phys. Scripta T139, 014043 (2010). https://doi.org/10.1088/0031-8949/2010/T139/014043
Article
Google Scholar
G.R. Goren-Muginstein, S. Berger, A. Rosen, Sintering study of nanocrystalline tungsten carbide powders. Nanostruct. Mater. 10(5), 795–804 (1998). https://doi.org/10.1016/S0965-9773(98)00116-0
Article
Google Scholar
X.Y. Ren, Z.J. Peng, C.B. Wang, Z.Q. Fu, L.H. Qi et al., Effect of ZrC nano-powder addition on the microstructure and mechanical properties of binderless tungsten carbide fabricated by spark plasma sintering. Int. J. Refract. Met. Hard Mater. 48, 398–407 (2015). https://doi.org/10.1016/j.ijrmhm.2014.10.013
Article
Google Scholar
K. Biswas, A. Mukhopadhyay, B. Basu, K. Chattopadhyay, Densification and microstructure development in spark plasma sintered WC–6 wt% ZrO2 nanocomposites. J. Mater. Res. 22(6), 1491–1501 (2007). https://doi.org/10.1557/JMR.2007.0189
Article
Google Scholar
B. Basu, J.H. Lee, D.Y. Kim, Development of WC–ZrO2 nanocomposites by spark plasma sintering. J. Am. Ceram. Soc. 87(2), 317–319 (2004). https://doi.org/10.1111/j.1551-2916.2004.00317.x
Article
Google Scholar
R. Holm, Electric Contacts: Theory and Application (Springer, New York, 1967), p. 22. https://doi.org/10.1007/978-3-662-06688-1
Book
Google Scholar
G. Petzow, W.A. Kaysser, Sintering with additives, in Sintering Key Papers, ed. by S. Somiya, Y. Moriyoshi (Elsevier, London, 1990), pp. 615–638. https://doi.org/10.1007/978-94-009-0741-6_39
Chapter
Google Scholar
J.L. Sun, J. Zhao, M.J. Chen, X.C. Wang, X. Zhong et al., Determination of microstructure and mechanical properties of functionally graded WC–TiC–Al2O3–GNPs micro-nano composite tool materials via two-step sintering. Ceram. Int. 43(12), 9276–9284 (2017). https://doi.org/10.1016/j.ceramint.2017.04.086
Article
Google Scholar
Z. Qiao, J. Räthel, L.M. Berger, M. Herrmann, Investigation of binderless WC–TiC–Cr3C2 hard materials prepared by spark plasma sintering (SPS). Int. J. Refract. Met. Hard Mater. 38, 7–14 (2013). https://doi.org/10.1016/j.ijrmhm.2012.12.002
Article
Google Scholar
Z. Li, S. Cheng, C. Shu, N. Qing, C. Xin et al., Hot pressing densification and grain growth behavior of WC–TiC–TaC binderless carbide. Mater. Sci. Eng. Powder Metall. 16(5), 781–786 (2011)
Google Scholar
A. Nino, Y. Izu, T. Sekine, S. Sugiyama, H. Taimatsu, Effects of ZrC and SiC addition on the microstructures and mechanical properties of binderless WC. Int. J. Refract. Met. Hard Mater. 69, 259–265 (2017). https://doi.org/10.1016/j.ijrmhm.2017.09.002
Article
Google Scholar
A. Nino, N. Takahashi, S. Sugiyama, H. Taimatsu, Effects of carbide grain growth inhibitors on the microstructures and mechanical properties of WC–SiC–Mo2C hard ceramics. Int. J. Refract. Met. Hard Mater. 43, 150–156 (2014). https://doi.org/10.1016/j.ijrmhm.2013.11.016
Article
Google Scholar
A. Fazili, L. Nikzad, M.R. RahimiPour, M. Razavi, E. Salahi, Effect of Al2O3 ceramic binder on mechanical and microstructure properties of spark plasma sintered WC–Co cermets. Int. J. Refract. Met. Hard Mater. 69, 189–195 (2017). https://doi.org/10.1016/j.ijrmhm.2017.08.010
Article
Google Scholar
A. Vornberger, J. Pötschke, C. Berger, Manufacturing and properties of tungsten carbide-oxide composites. Key Eng. Mater. 742, 223–230 (2017). https://doi.org/10.4028/www.scientific.net/KEM.742.223
Article
Google Scholar
J. Wang, D. Zuo, L. Zhu, W.W. Li, Z.B. Tu et al., Effects and influence of Y2O3 addition on the microstructure and mechanical properties of binderless tungsten carbide fabricated by spark plasma sintering. Int. J. Refract. Met. Hard Mater. 71, 167–174 (2018). https://doi.org/10.1016/j.ijrmhm.2017.11.016
Article
Google Scholar
O.A. El-Kady, Effect of nano-yttria addition on the properties of WC/Co composites. Mater. Des. 52, 481–486 (2013). https://doi.org/10.1016/j.matdes.2013.05.034
Article
Google Scholar
X.Y. Ren, Z.J. Peng, C. Wang, H.Z. Miao, Influence of nano-sized La2O3 addition on the sintering behavior and mechanical properties of WC–La2O3 composites. Ceram. Int. 41(10), 14811–14818 (2015). https://doi.org/10.1016/j.ceramint.2015.08.002
Article
Google Scholar
A. Rajabi, M.J. Ghazali, A.R. Daud, Chemical composition, microstructure and sintering temperature modifications on mechanical properties of TiC-based cerme—a review. Mater. Des. 67, 95–106 (2017). https://doi.org/10.1016/j.matdes.2014.10.081
Article
Google Scholar
H. Kim, D. Kim, I. Ko et al., Sintering behavior and mechanical properties of binderless WC–TiC produced by pulsed current activated sintering. J. Ceram. Process Res. 8(2), 91 (2007)
Google Scholar
S. Imasato, K. Tokumoto, T. Kitada, S. Sakaguchi, Properties of ultra-fine grain binderless cemented carbide ‘RCCFN’. Int. J. Refract. Met. Hard Mater. 13(5), 305–312 (1995). https://doi.org/10.1016/0263-4368(95)92676-B
Article
Google Scholar
H.C. Kim, D.K. Kim, K.D. Woo, I.Y. Ko, I.J. Shon, Consolidation of binderless WC–TiC by high frequency induction heating sintering. Int. J. Refract. Met. Hard Mater. 26(1), 48–54 (2008). https://doi.org/10.1016/j.ijrmhm.2007.01.006
Article
Google Scholar
J.J. Gao, L.K. Jiang, J.P. Song, G.X. Liang, J. Ang et al., Effects of TiC content on microstructure and mechanical property of WC–TiC–TaC cemented carbides. J. Inorg. Mater. 32(8), 891–896 (2017). https://doi.org/10.15541/jim20160633
Article
Google Scholar
H. Engqvist, G.A. Botton, N. Axe, S. Hogmark, A study of grain boundaries in a binderless cemented carbide. Int. J. Refract. Met. Hard Mater. 16(4–6), 309–313 (1998). https://doi.org/10.1016/S0263-4368(98)00034-1
Article
Google Scholar
S.G. Huang, K. Vanmeensel, B. Vander, J. Vleugels, Binderless WC and WC–VC materials obtained by pulsed electric current sintering. Int. J. Refract. Met. Hard Mater. 26(1), 41–47 (2008). https://doi.org/10.1016/j.ijrmhm.2007.01.002
Article
Google Scholar
H.C. Kim, H.K. Park, I.K. Jeong, I.Y. Ko, I.J. Shon, Sintering of binderless WC–Mo2C hard materials by rapid sintering process. Ceram. Int. 34(6), 1419–1423 (2008). https://doi.org/10.1016/j.ceramint.2007.03.029
Article
Google Scholar
H. Taimatsu, S. Sugiyama, M. Komatsu, Effects of Cr3C2 and V8C7 on the microstructure and mechanical properties of WC–SiC whisker ceramics. Mater. Trans. 50(10), 2435–2440 (2009). https://doi.org/10.2320/matertrans.M2009169
Article
Google Scholar
A. Nino, Y. Nakaibayashi, S. Sugiyama, H. Taimatsu, Microstructure and mechanical properties of WC–SiC composites. Mater. Trans. 52(8), 1641–1645 (2011). https://doi.org/10.2320/matertrans.M2011045
Article
Google Scholar
S. Sugiyama, D. Kudo, H. Taimatsu, Preparation of WC–SiC whisker composites by hot pressing and their mechanical properties. Mater. Trans. 49(7), 1644–1649 (2008). https://doi.org/10.2320/matertrans.MRA2008019
Article
Google Scholar
A. Nino, Y. Nakaibayashi, S. Sugiyama, H. Taimatsu, Effect of Mo2C addition on the microstructures and mechanical properties of WC–SiC ceramics. Int. J. Refract. Met. Hard Mater. 64, 35–39 (2017). https://doi.org/10.1016/j.ijrmhm.2016.12.018
Article
Google Scholar
A. Nino, T. Sekine, K. Sugawara, S. Sugiyama, H. Taimatsu, Effect of added Cr3C2 on the microstructure and mechanical properties of WC–SiC ceramics. Key Eng. Mater. 656, 33 (2015). https://doi.org/10.4028/www.scientific.net/KEM.656-657.33
Article
Google Scholar
O.L. Ighodaro, O.I. Okoli, Fracture toughness enhancement for alumina systems, a review. Int. J. Appl. Ceram. Technol. 5(3), 313–323 (2008). https://doi.org/10.1111/j.1744-7402.2008.02224.x
Article
Google Scholar
W.H. Chen, H.T. Lin, P.K. Nayak, J.L. Huang, Material properties of tungsten carbide–alumina composites fabricated by spark plasma sintering. Ceram. Int. 40(9), 15007–15012 (2014). https://doi.org/10.1016/j.ceramint.2014.06.102
Article
Google Scholar
W. Dong, S. Zhu, Y. Wang, T. Bai, Influence of VC and Cr3C2 as grain growth inhibitors on WC–Al2O3 composites prepared by hot press sintering. Int. J. Refract. Met. Hard Mater. 45, 223–229 (2014). https://doi.org/10.1016/j.ijrmhm.2014.04.011
Article
Google Scholar
W. Dong, S. Zhu, T. Bai, Y. Luo, Influence of Al2O3 whisker concentration on mechanical properties of WC–Al2O3 whisker composite. Ceram. Int. 41(10), 13685–13691 (2015). https://doi.org/10.1016/j.ceramint.2015.07.167
Article
Google Scholar
H. Qu, S. Zhu, Two step hot pressing sintering of dense fine grained WC–Al2O3 composites. Ceram. Int. 39(5), 5415–5425 (2013). https://doi.org/10.1016/j.ceramint.2012.12.049
Article
Google Scholar
W.H. Chen, H.T. Lin, P.K. Nayak, M.P. Chang, J.L. Huang et al., Sintering behavior and mechanical properties of WC–Al2O3 composites prepared by spark plasma sintering (SPS). Int. J. Refract. Met. Hard Mater. 48, 414–417 (2015). https://doi.org/10.1016/j.ijrmhm.2014.10.016
Article
Google Scholar
W.W. Dong, S.G. Zhu, C.X. Ouyang, The effect of VC on the sintering ability and microstructure of WC–Al2O3 composites. Appl. Mech. Mater. 490, 43–48 (2014). https://doi.org/10.4028/www.scientific.net/AMM.490-491.43
Article
Google Scholar
S.G. Zhu, H.X. Qu, C.X. Ouyang, Hot pressing of tungsten carbide ceramic matrix composites, in Advances in Ceramic Matrix Composites, ed. by I.M. Low (Woodhead Publishing, Cambridge, 2014), pp. 203–229. https://doi.org/10.1016/B978-0-08-102166-8.00009-8
Chapter
Google Scholar
D. Zheng, X. Li, X. Ai, C. Yang, Y. Li, Bulk WC–Al2O3 composites prepared by spark plasma sintering. Int. J. Refract. Met. Hard Mater. 30(1), 51–56 (2012). https://doi.org/10.1016/j.ijrmhm.2011.07.003
Article
Google Scholar
S.J. Oh, B.S. Kim, J.K. Yoon, K.T. Hong, I.J. Shon, Enhanced mechanical properties and consolidation of the ultra-fine WC–Al2O3 composites using pulsed current activated heating. Ceram. Int. 42(7), 9304–9310 (2016). https://doi.org/10.1016/j.ceramint.2016.02.113
Article
Google Scholar
H. Qu, S. Zhu, Q. Li, C. Quyang, Microstructure and mechanical properties of hot-pressing sintered WC–x vol.% Al2O3 composites. Mater. Sci. Eng., A 543, 96–103 (2012). https://doi.org/10.1016/j.msea.2012.02.053
Article
Google Scholar
S.J. Oh, B.S. Kim, I.J. Shon, Mechanical properties and rapid consolidation of nanostructured WC and WC–Al2O3 composites by high-frequency induction-heated sintering. Int. J. Refract. Met. Hard Mater. 58, 189–195 (2016). https://doi.org/10.1016/j.ijrmhm.2016.04.016
Article
Google Scholar
W.H. Tuan, R.Z. Chen, T.C. Wang, C.H. Cheng, P.S. Kuo, Mechanical properties of Al2O3/ZrO2 composites. J. Eur. Ceram. Soc. 22(16), 2827–2833 (2002). https://doi.org/10.1016/S0955-2219(02)00043-2
Article
Google Scholar
D. Zheng, X. Li, Y. Li, S. Qu, C. Yang, ZrO2 (3Y) toughened WC composites prepared by spark plasma sintering. J. Alloy. Compd. 572, 62–67 (2013). https://doi.org/10.1016/j.jallcom.2013.03.259
Article
Google Scholar
F.Z. Yang, J. Zhao, X. Ai, Effect of initial particulate and sintering temperature on mechanical properties and microstructure of WC–ZrO2–VC ceramic composites. J. Mater. Process. Technol. 209(9), 4531–4536 (2009). https://doi.org/10.1016/j.jmatprotec.2008.10.027
Article
Google Scholar
T. Venkateswaran, D. Sarkar, B. Basu, WC–ZrO2 composites, processing and unlubricated tribological properties. Wear 260(1–2), 1–9 (2006). https://doi.org/10.1016/j.wear.2004.11.005
Article
Google Scholar
T. Venkateswaran, D. Sarkar, B. Basu, Tribological properties of WC–ZrO2 nanocomposites. J. Am. Ceram. Soc. 88(3), 691–697 (2005). https://doi.org/10.1111/j.1551-2916.2005.00129.x
Article
Google Scholar
B. Basu, J.H. Lee, D.Y. Kim, Development of WC–ZrO2 nanocomposites by spark plasma sintering. J. Am. Ceram. Soc. 87(2), 317–319 (2004). https://doi.org/10.1111/j.1551-2916.2004.00317.x
Article
Google Scholar
O. Malek, B. Lauwers, Y. Perez, P.D. Baets, J. Vleugels, Processing of ultrafine ZrO2 toughened WC composites. J. Eur. Ceram. Soc. 29(16), 3371–3378 (2009). https://doi.org/10.1016/j.jeurceramsoc.2009.07.013
Article
Google Scholar
A. Nasser, M.A. Kassem, A. Elsayed, M.A. Gepreel, A.A. Moniem, Influence of grain refinement on microstructure and mechanical properties of tungsten carbide/zirconia nanocomposites. J. Mater. Eng. Perform. 25(11), 5065–5075 (2016). https://doi.org/10.1007/s11665-016-2341-8
Article
Google Scholar
B. Basu, T. Venkateswaran, D. Sarkar, Pressureless sintering and tribological properties of WC–ZrO2 composites. J. Eur. Ceram. Soc. 25(9), 1603–1610 (2005). https://doi.org/10.1016/j.jeurceramsoc.2004.05.021
Article
Google Scholar
A. Mukhopadhyay, B. Basu, Consolidation–microstructure–property relationships in bulk nanoceramics and ceramic nanocomposites, a review. Int. Mater. Rev. 52(5), 257–288 (2007). https://doi.org/10.1179/174328007X160281
Article
Google Scholar
Z.A. Munir, U. Anselmi-Tamburini, M. Ohyanagi, The effect of electric field and pressure on the synthesis and consolidation of materials, a review of the spark plasma sintering method. J. Mater. Sci. 41(3), 763–777 (2006). https://doi.org/10.1007/s10853-006-6555-2
Article
Google Scholar
K. Inoue, US Patent, No 3 241 956 (1966)
M. Omori, Sintering, consolidation, reaction and crystal growth by the spark plasma system (SPS). Mater. Sci. Eng., A 287(2), 183–188 (2000). https://doi.org/10.1016/S0921-5093(00)00773-5
Article
Google Scholar
R.S. Mishra, S.H. Risbud, A.K. Mukherjee, Influence of initial crystal structure and electrical pulsing on densification of nanocrystalline alumina powder. J. Mater. Res. 13(1), 86–89 (1998). https://doi.org/10.1557/JMR.1998.0013
Article
Google Scholar
K.A. Khalil, Advanced sintering of nano-ceramic materials, in Ceramic Materials-Progress in Modern Ceramics, ed. by S. Feng (InTech, Shanghai, 2012), pp. 65–82
Google Scholar
M. Suárez, J.L. Fernández, R. Menéndez, R. Torrecillas, H.U. Kessel et al., Challenges and opportunities for spark plasma sintering, a key technology for a new generation of materials, in Sintering Applications, ed. by B. Ertuğ (InTech, Turkey, 2013), pp. 319–342. https://doi.org/10.5772/53706
Chapter
Google Scholar
B. Huang, L.D. Chen, S.Q. Bai, Bulk ultrafine binderless WC prepared by spark plasma sintering. Scr. Mater. 54(3), 441–445 (2006). https://doi.org/10.1016/j.scriptamat.2005.10.014
Article
Google Scholar
S.I. Cha, S.H. Hong, B.K. Kim, Spark plasma sintering behavior of nanocrystalline WC–10Co cemented carbide powders. Mater. Sci. Eng., A 351(1–2), 31–38 (2003). https://doi.org/10.1016/S0921-5093(02)00605-6
Article
Google Scholar
Y. Wang, D. Zhu, X. Jiang, P. Sun, Binderless sub-micron WC consolidated by hot pressing and treated by hot isostatic pressing. J. Ceram. Soc. Jpn. 122(1425), 329–335 (2014). https://doi.org/10.2109/jcersj2.122.329
Article
Google Scholar
K.M. Tsai, The effect of consolidation parameters on the mechanical properties of binderless tungsten carbide. Int. J. Refract. Met. Hard Mater. 29(2), 188–201 (2011). https://doi.org/10.1016/j.ijrmhm.2010.10.006
Article
Google Scholar
J. Zhang, G. Zhang, S. Zhao, X. Song, Binder-free WC bulk synthesized by spark plasma sintering. J. Alloy. Compd. 479(1–2), 427–431 (2009). https://doi.org/10.1016/j.jallcom.2008.12.151
Article
Google Scholar
S.K. Sun, Y.M. Kan, G.J. Zhang, Fabrication of nanosized tungsten carbide ceramics by reactive spark plasma sintering. J. Am. Ceram. Soc. 94(10), 3230–3233 (2011). https://doi.org/10.1111/j.1551-2916.2011.04813.x
Article
Google Scholar
M. Dopita, A. Salomon, D. Chmelik, B. Reichel, Field assisted sintering technique compaction of ultrafine-grained binderless WC hard metals. Acta Phys. Pol., A 122(3), 639 (2012). https://doi.org/10.12693/APhysPolA.122.639
Article
Google Scholar
H.T. Kim, J.S. Kim, Y.S. Kwon, Mechanical properties of binderless tungsten carbide by spark plasma sintering, in Proceedings of the 9th Russian-Korean International Symposium on Science and Technology, KORUS (2005)
X. Liu, L. Tao, H. Shao, Z. Guo, J. Luo et al., Consolidation and properties of ultrafine binderless cemented carbide by spark plasma sintering. Rare Met. 27(3), 320–323 (2008). https://doi.org/10.1016/S1001-0521(08)60137-0
Article
Google Scholar
X. Xia, X. Li, J. Li, D. Zheng, Microstructure and characterization of WC–2.8 wt% Al2O3–6.8 wt%ZrO2 composites produced by spark plasma sintering. Ceram. Int. 42(12), 14182–14188 (2016). https://doi.org/10.1016/j.ceramint.2016.06.044
Article
Google Scholar
H.C. Kim, I.J. Shon, I.K. Jeong, I.Y. Ko, J.K. Yoon et al., Rapid sintering of ultrafine WC and WC–Co hard materials by high-frequency induction heated sintering and their mechanical properties. Met. Mater. Int. 13(1), 39–45 (2007). https://doi.org/10.1007/BF03027821
Article
Google Scholar
I.J. Shon, B.R. Kim, J.M. Doh, J.K. Yoon, K.D. Woo, Properties and rapid consolidation of ultra-hard tungsten carbide. J. Alloy. Compd. 489(1), L4–L8 (2010). https://doi.org/10.1016/j.jallcom.2009.09.040
Article
Google Scholar
H. Awaji, S.M. Choi, E. Yagi, Mechanisms of toughening and strengthening in ceramic-based nanocomposites. Mech. Mater. 34(7), 411–422 (2002). https://doi.org/10.1016/S0167-6636(02)00129-1
Article
Google Scholar
M. Taya, S. Hayashi, A.S. Kobayashi, H.S. Yoon, Toughening of a particulate-reinforced ceramic-matrix composite by thermal residual stress. J. Am. Ceram. Soc. 73(5), 1382–1391 (1990). https://doi.org/10.1111/j.1151-2916.1990.tb05209.x
Article
Google Scholar
B. Budiansky, J.C. Amazigo, A.G. Evans, Small-scale crack bridging and the fracture toughness of particulate-reinforced ceramics. J. Mech. Phys. Solids 36, 167–187 (1988). https://doi.org/10.1016/S0022-5096(98)90003-5
Article
Google Scholar
M.S. El-Eskandarany, Fabrication of nanocrystalline WC and nanocomposite WC–MgO refractory materials at room temperature. J. Alloy. Compd. 296(1–2), 175–182 (2000). https://doi.org/10.1016/S0925-8388(99)00508-3
Article
Google Scholar
J. Ma, S. Zhu, C. Ouyang, Two-step hot-pressing sintering of nanocomposite WC–MgO compacts. J. Eur. Ceram. Soc. 31(10), 1927–1935 (2011). https://doi.org/10.1016/j.jeurceramsoc.2011.04.001
Article
Google Scholar
C. Ouyang, S. Zhu, H. Qu, VC and Cr3C2 doped WC–MgO compacts prepared by hot-pressing sintering. Mater. Des. 40, 550–555 (2012). https://doi.org/10.1016/j.matdes.2012.04.030
Article
Google Scholar
M. Radajewski, C. Schimpf, L. Krüger, Study of processing routes for WC–MgO composites with varying MgO contents consolidated by FAST/SPS. J. Eur. Ceram. Soc. 37(5), 2031–2037 (2017). https://doi.org/10.1016/j.jeurceramsoc.2017.01.005
Article
Google Scholar
J.L. Sun, J. Zhao, X.Y. Ni, F. Gong et al., Fabrication of dense nano-laminated tungsten carbide materials doped with Cr3C2/VC through two-step sintering. J. Eur. Ceram. Soc. 38(9), 3096–3103 (2018). https://doi.org/10.1016/j.jeurceramsoc.2018.02.037
Article
Google Scholar
J.L. Sun, J. Zhao, M.J. Chen, X.Y. Ni, Z.L. Li et al., Determination of microstructure and mechanical properties of VC/Cr3C2 reinforced functionally graded WC–TiC–Al2O3 micro-nano composite tool materials via two-step sintering. J. Alloys Compd. 709, 197–205 (2017). https://doi.org/10.1016/j.jallcom.2017.03.137
Article
Google Scholar
P.M. Kelly, L.F. Rose, The martensitic transformation in ceramics-its role in transformation toughening. Prog. Mater Sci. 47(5), 463–557 (2002). https://doi.org/10.1016/S0079-6425(00)00005-0
Article
Google Scholar
R.H. Hannink, P.M. Kelly, B.C. Muddle, Transformation toughening in zirconia-containing ceramics. J. Am. Ceram. Soc. 83(3), 461–487 (2000). https://doi.org/10.1111/j.1151-2916.2000.tb01221.x
Article
Google Scholar
B. Basu, Toughening of yttria-stabilised tetragonal zirconia ceramics. Int. Mater. Rev. 50(4), 239–256 (2005). https://doi.org/10.1179/174328005X41113
Article
Google Scholar
P.F. Becher, Microstructural design of toughened ceramics. J. Am. Ceram. Soc. 74(2), 255–269 (1991). https://doi.org/10.1111/j.1151-2916.1991.tb06872.x
Article
Google Scholar
A. Mukhopadhyay, D. Chakravarty, B. Basu, Spark plasma-sintered WC–ZrO2–Co nanocomposites with high fracture toughness and strength. J. Am. Ceram. Soc. 93(6), 1754–1763 (2010). https://doi.org/10.1111/j.1551-2916.2010.03685.x
Article
Google Scholar
J. Wang, R. Stevens, Zirconia-toughened alumina (ZTA) ceramics. J. Mater. Sci. 24(10), 3421–3440 (1989). https://doi.org/10.1007/BF02385721
Article
Google Scholar
D. Zheng, X. Li, Y. Li, S. Qu, C. Yang, Zirconia-toughened WC with/without VC and Cr3C2. Ceram. Int. 40(1), 2011–2016 (2014). https://doi.org/10.1016/j.ceramint.2013.07.111
Article
Google Scholar
M. Bengisu, O.T. Inal, Whisker toughening of ceramics, toughening mechanisms, fabrication, and composite properties. Annu. Rev. Mater. Sci. 24(1), 83–124 (1994). https://doi.org/10.1146/annurev.ms.24.080194.000503
Article
Google Scholar
M. Bengisu, O.T. Inal, O. Tosyali, On whisker toughening in ceramic materials. Acta Metall. Mater. 39(11), 2509–2517 (1991). https://doi.org/10.1016/0956-7151(91)90066-A
Article
Google Scholar
P.F. Becher, C.H. Hsueh, P. Angelini et al., Toughening behavior in whisker-reinforced ceramic matrix composites. J. Am. Ceram. Soc. 71(12), 1050–1061 (1988). https://doi.org/10.1111/j.1151-2916.1988.tb05791.x
Article
Google Scholar
X.B. Li, C.M. Ke, N. Li, Progress in ceramic matrix composite by SiC whisker toughening. Mater. Rev. 21(8), 394–397 (2007)
Google Scholar
Y.J. Chao, J. Liu, Study of WC ceramic tool material by SiC whisker toughening. Rare Metals Cemented Carbides 33(4), 13–16 (2005)
Google Scholar
H. Taimatsu, S. Sugiyama, M. Komatsu, Effects of Cr3C2 and V8C7 on the microstructure and mechanical properties of WC–SiC whisker ceramics. Mater. Trans. 50(10), 2435–2440 (2009). https://doi.org/10.2320/matertrans.M2009169
Article
Google Scholar
D. Zheng, X. Li, Y. Li, S. Qu, C. Yang, In-situ elongated β-Si3N4 grains toughened WC composites prepared by one/two-step spark plasma sintering. Mater. Sci. Eng., A 561, 445–451 (2013). https://doi.org/10.1016/j.msea.2012.10.059
Article
Google Scholar
Y. Li, D. Zheng, X. Li, S. Qu, C. Yang, Cr3C2 and VC doped WC–Si3N4 composites prepared by spark plasma sintering. Int. J. Refract. Met. Hard Mater. 41, 540–546 (2013). https://doi.org/10.1016/j.ijrmhm.2013.07.004
Article
Google Scholar
Y. Li, X. Li, D. Zheng, S. Qu, C. Yang, et al., Tungsten carbide composite material comprising aluminium oxide particles and silicon nitride whiskers and preparation process thereof. WO, WO/2013/020317 (2013)
R. Lakshminarayanan, D.K. Shetty, R.A. Cutler, Toughening of layered ceramic composites with residual surface compression. J. Am. Ceram. Soc. 79(1), 79–87 (1996). https://doi.org/10.1111/j.1151-2916.1996.tb07883.x
Article
Google Scholar
G. Blugan, R. Dobedoe, M. Lugovy, S. Koebel, J. Kuebler, Si3N4–TiN based micro-laminates with rising R-curve behavior. Compos. Part B 37(6), 459–465 (2006). https://doi.org/10.1016/j.compositesb.2006.02.013
Article
Google Scholar
M. Lugovy, V. Slyunyayev, N. Orlovskaya, G. Blugan, J. Kuebler et al., Apparent fracture toughness of Si3N4-based laminates with residual compressive or tensile stresses in surface layers. Acta Mater. 53(2), 289–296 (2005). https://doi.org/10.1016/j.actamat.2004.09.022
Article
Google Scholar
S. Iijima, Helical microtubules of graphitic carbon. Nature 354(6348), 56–58 (1998). https://doi.org/10.1038/354056a0
Article
Google Scholar
S.C. Tjong, Carbon Nanotube Reinforced Composites, Metal and Ceramic Matrices (Wiley, Hoboken, 2009), pp. 61–64. https://doi.org/10.1002/9783527626991
Book
Google Scholar
I.J. Shon, K.I. Na, B.R. Kim, I.Y. Ko, J.M. Doh et al., Mechanical properties and consolidation of nanostructured WC–CNT composites by high frequency induction heated sintering. Rev. Adv. Mater. Sci. 28, 9–12 (2011)
Google Scholar
T. Bai, Fabrication and properties of WC–Al2O3 cemented carbide reinforced by single-walled carbon nanotubes. Appl. Mech. Mater. 404, 91–94 (2013). https://doi.org/10.4028/www.scientific.net/AMM.404.91
Article
Google Scholar
T. Bai, T. Xie, Fabrication and mechanical properties of WC–Al2O3 cemented carbide reinforced by CNTs. Mater. Chem. Phys. 201, 113–119 (2017). https://doi.org/10.1016/j.matchemphys.2017.08.018
Article
Google Scholar
T. Bai, T. Xie, Influence of TiO2 contents and sintering temperature on the microstructure and mechanical properties of WC–Al2O3 cemented carbide reinforced by multi-wall carbon nanotubes. J. Alloy. Compd. 745, 562–568 (2018). https://doi.org/10.1016/j.jallcom.2018.02.233
Article
Google Scholar
J.H. Jang, I.H. Oh, J.W. Lim, H.K. Park, Fabrication and mechanical properties of binderless-WC and WC–CNT hard materials by pulsed current activated sintering method. J. Ceram. Process. Res. 18(7), 477–482 (2017)
Google Scholar
T. Cao, X. Li, J. Li, M. Zhang, H. Qiu, Effect of sintering temperature on phase constitution and mechanical properties of WC–1.0wt% carbon nanotube composites. Ceram. Int. 44(1), 164–169 (2018). https://doi.org/10.1016/j.ceramint.2017.09.154
Article
Google Scholar
K.S. Novoselov, A.K. Geim, S. Morozov, D. Jiang, M.I. Katsnelson et al., Two-dimensional gas of massless dirac fermions in graphene. Nature 438(7065), 197–200 (2005). https://doi.org/10.1038/nature04233
Article
Google Scholar
A.K. Geim, Graphene, status and prospects. Science 324(5934), 1530–1534 (2009). https://doi.org/10.1126/science.1158877
Article
Google Scholar
O. Tapasztó, L. Tapasztó, M. Markó, F. Kern, R. Gadow et al., Dispersion patterns of graphene and carbon nanotubes in ceramic matrix composites. Chem. Phys. Lett. 511(4–6), 340–343 (2011). https://doi.org/10.1016/j.cplett.2011.06.047
Article
Google Scholar
S. Stankovich, D.A. Dikin, G.H. Dommett, K.M. Kohlhaas, E.J. Zimney et al., Graphene-based composite materials. Nature 442(7100), 282–286 (2006). https://doi.org/10.1038/nature04969
Article
Google Scholar
A. Nieto, D. Lahiri, A. Agarwal, Synthesis and properties of bulk graphene nanoplatelets consolidated by spark plasma sintering. Carbon 50(11), 4068–4077 (2012). https://doi.org/10.1016/j.carbon.2012.04.054
Article
Google Scholar
A. Nieto, A. Bisht, D. Lahiri, C. Zhang, A. Agarwal, Graphene reinforced metal and ceramic matrix composites, a review. Int. Mater. Rev. 62(5), 241–302 (2017). https://doi.org/10.1080/09506608.2016.1219481
Article
Google Scholar
I. Ahmad, M. Islam, T. Subhani, Y.Q. Zhou, Toughness enhancement in graphene nanoplatelet/SiC reinforced Al2O3 ceramic hybrid nanocomposites. Nanotechnology 27(42), 425704 (2016). https://doi.org/10.1088/0957-4484/27/42/425704
Article
Google Scholar
L.S. Walker, V.R. Marotto, M.A. Rafiee, N. Koratkar, E.L. Corral, Toughening in graphene ceramic composites. ACS Nano 5(4), 3182–3190 (2011). https://doi.org/10.1021/nn200319d
Article
Google Scholar
M.S. Asl, M.G. Kakroudi, Characterization of hot-pressed graphene reinforced ZrB2–SiC composite. Mater. Sci. Eng., A 625, 385–392 (2015). https://doi.org/10.1016/j.msea.2014.12.028
Article
Google Scholar
J. Liu, H. Yan, M.J. Reece, K. Jiang, Toughening of zirconia/alumina composites by the addition of graphene platelets. J. Eur. Ceram. Soc. 32(16), 4185–4193 (2012). https://doi.org/10.1016/j.jeurceramsoc.2012.07.007
Article
Google Scholar
A. Nieto, D. Lahiri, A. Agarwal, Graphene nano platelets reinforced tantalum carbide consolidated by spark plasma sintering. Mater. Sci. Eng., A 582, 338–346 (2013). https://doi.org/10.1016/j.msea.2013.06.006
Article
Google Scholar
J.L. Sun, J. Zhao, M.J. Chen, Y.H. Zhou, X.Y. Ni et al., Multilayer graphene reinforced functionally graded tungsten carbide nano-composites. Mater. Des. 134, 171–180 (2017). https://doi.org/10.1016/j.matdes.2017.08.041
Article
Google Scholar
W. Tang, L. Zhang, J.F. Zhu, Y. Chen, W. Tian et al., Effect of direct current patterns on densification and mechanical properties of binderless tungsten carbides fabricated by the spark plasma sintering system. Int. J. Refract. Met. Hard Mater. 64, 90–97 (2017). https://doi.org/10.1016/j.ijrmhm.2017.01.010
Article
Google Scholar
J. Poetschke, V. Richter, A. Michaelis, Influence of small additions of MeC on properties of binderless tungsten carbide, in Euro PM 2014 International Conference and Exhibition, Salzburg, Austria, September 2014
M. Dopita, C.R. Sriram, D. Chmelik, A. Salomon, H.J. Seifert, Spark plasma sintering of nanocrystalline binderless WC hard metals, in Proceedings of Conference Nanocon 2010, Olomouc, Czech Republic. October 2010
H.C. Kim, J.K. Yoon, J.M. Doh, I.Y. Koa, I.J. Shon, Rapid sintering process and mechanical properties of binderless ultra fine tungsten carbide. Mater. Sci. Eng., A 435, 717–724 (2006). https://doi.org/10.1016/j.msea.2006.07.127
Article
Google Scholar
H. Kim, D. Kim, I. Ko, I.J. Shon, Sintering behavior and mechanical properties of binderless WC–TiC produced by pulsed current activated sintering. J. Ceram. Process. Res. 8(2), 91 (2007)
Google Scholar
H. Engqvist, G.A. Botton, N. Axén et al., Microstructure and abrasive wear of binderless carbides. J. Am. Ceram. Soc. 83(10), 2491–2496 (2000). https://doi.org/10.1111/j.1151-2916.2000.tb01580.x
Article
Google Scholar
J. Poetschke, V. Richter, R. Holke, Influence and effectivity of VC and Cr3C2 grain growth inhibitors on sintering of binderless tungsten carbide. Int. J. Refract. Met. Hard Mater. 31, 218–223 (2012). https://doi.org/10.1016/j.ijrmhm.2011.11.006
Article
Google Scholar
X.Y. Ren, Z.J. Peng, Y. Peng, C.B. Wang, Z.Q. Fu et al., Ultrafine binderless WC-based cemented carbides with varied amounts of AlN nano-powder fabricated by spark plasma sintering. Int. J. Refract. Met. Hard Mater. 41, 308–314 (2013). https://doi.org/10.1016/j.ijrmhm.2013.05.002
Article
Google Scholar
Y. Liu, Z. Wang, Q. Sun, B. Yin, J. Chen et al., Tribological behavior and wear mechanism of pure WC at wide range temperature from 25 to 800°C in vacuum and air environment. Int. J. Refract. Met. Hard Mater. 71, 160–166 (2018). https://doi.org/10.1016/j.ijrmhm.2017.11.024
Article
Google Scholar
H. Engqvist, N. Axén, S. Hogmark, Resistance of a binderless cemented carbide to abrasion and particle erosion. Tribol. Lett. 4(3–4), 251–258 (1998). https://doi.org/10.1023/A:1019132011439
Article
Google Scholar