P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7(11), 845–854 (2008). https://doi.org/10.1038/nmat2297
Article
Google Scholar
V. Jenel, V. Mihaela, B. Oleg, B. Dmitry, A comparative study of room temperature ionic liquids and their organic solvent mixtures near charged electrodes. J. Phys-Condens. Matter 28(46), 464002 (2016). https://doi.org/10.1088/0953-8984/28/46/464002
Article
Google Scholar
A.G. Pandolfo, A.F. Hollenkamp, Carbon properties and their role in supercapacitors. J. Power Sources 157(1), 11–27 (2006). https://doi.org/10.1016/j.jpowsour.2006.02.065
Article
Google Scholar
M. Salanne, B. Rotenberg, K. Naoi, K. Kaneko, P.L. Taberna, C.P. Grey, B. Dunn, P. Simon, Efficient storage mechanisms for building better supercapacitors. Nat. Energy 1, 16070 (2016). https://doi.org/10.1038/nenergy.2016.70
Article
Google Scholar
X. Zhang, X. Sun, H. Zhang, C. Li, Y. Ma, Comparative performance of birnessite-type MnO2 nanoplates and octahedral molecular sieve (OMS-5) nanobelts of manganese dioxide as electrode materials for supercapacitor application. Electrochim. Acta 132, 315–322 (2014). https://doi.org/10.1016/j.electacta.2014.03.176
Article
Google Scholar
E. Faggioli, P. Rena, V. Danel, X. Andrieu, R. Mallant, H. Kahlen, Supercapacitors for the energy management of electric vehicles. J. Power Sources 84(2), 261–269 (1999). https://doi.org/10.1016/s0378-7753(99)00326-2
Article
Google Scholar
J.R. Miller, P. Simon, Materials science—electrochemical capacitors for energy management. Science 321(5889), 651–652 (2008). https://doi.org/10.1126/science.1158736
Article
Google Scholar
B. Dunn, H. Kamath, J.M. Tarascon, Electrical energy storage for the grid: a battery of choices. Science 334(6058), 928–935 (2011). https://doi.org/10.1126/science.1212741
Article
Google Scholar
J.R. Miller, R.A. Outlaw, B.C. Holloway, Graphene double-layer capacitor with ac line-filtering performance. Science 329(5999), 1637–1639 (2010). https://doi.org/10.1126/science.1194372
Article
Google Scholar
L.L. Zhang, X.S. Zhao, Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 38(9), 2520–2531 (2009). https://doi.org/10.1039/b813846j
Article
Google Scholar
J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, P.L. Taberna, Anomalous increase in carbon capacitance at pore sizes less than 1 nm. Science 313(5794), 1760–1763 (2006). https://doi.org/10.1126/science.1132195
Article
Google Scholar
S.Y. Lee, C.H. Choi, M.W. Chung, J.H. Chung, S.I. Woo, Dimensional tailoring of nitrogen-doped graphene for high performance supercapacitors. RSC Adv. 6(60), 55577–55583 (2016). https://doi.org/10.1039/c6ra07825g
Article
Google Scholar
G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41(2), 797–828 (2012). https://doi.org/10.1039/c1cs15060j
Article
Google Scholar
Y. Zhang, H. Feng, X. Wu, L. Wang, A. Zhang, T. Xia, H. Dong, X. Li, L. Zhang, Progress of electrochemical capacitor electrode materials: a review. Int. J. Hydrog. Energy 34(11), 4889–4899 (2009). https://doi.org/10.1016/j.ijhydene.2009.04.005
Article
Google Scholar
G. Feng, S. Li, J.S. Atchison, V. Presser, P.T. Cummings, Molecular insights into carbon nanotube supercapacitors: capacitance independent of voltage and temperature. J. Phys. Chem. C 117(18), 9178–9186 (2013). https://doi.org/10.1021/jp403547k
Article
Google Scholar
Y. Shim, H.J. Kim, Solvation of carbon nanotubes in a room-temperature ionic liquid. ACS Nano 3(7), 1693–1702 (2009). https://doi.org/10.1021/nn900195b
Article
Google Scholar
H. Yang, J. Yang, Z. Bo, S. Zhang, J. Yan, K. Cen, Edge effects in vertically-oriented graphene based electric double-layer capacitors. J. Power Sources 324, 309–316 (2016). https://doi.org/10.1016/j.jpowsour.2016.05.072
Article
Google Scholar
H. Yang, X. Zhang, J. Yang, Z. Bo, M. Hu, J. Yan, K. Cen, Molecular origin of electric double-layer capacitance at multilayer graphene edges. J. Phys. Chem. Lett. 8(1), 153–160 (2016). https://doi.org/10.1021/acs.jpclett.6b02659
Article
Google Scholar
H.V. Helmholtz, Studien über electrische grenzschichten. Ann. Phys. 243(7), 337–382 (1879). https://doi.org/10.1002/andp.18792430702
MATH
Article
Google Scholar
M. Gouy, Sur la constitution de la charge électrique à la surface d’un électrolyte. J. Phys. Theor. Appl. 9(1), 457–468 (1910). https://doi.org/10.1051/jphystap:019100090045700
MATH
Article
Google Scholar
D.L. Chapman, A contribution to the theory of electrocapillarity. Philos. Mag. 25(148), 475–481 (1913). https://doi.org/10.1080/14786440408634187
MATH
Article
Google Scholar
E. Frackowiak, Q. Abbas, F. Beguin, Carbon/carbon supercapacitors. J. Energy Chem. 22(2), 226–240 (2013). https://doi.org/10.1016/S2095-4956(13)60028-5
Article
Google Scholar
O. Stern, The theory of the electrolytic double shift. Z. Elektrochem. Angew. Physik. Chem. 30, 508–516 (1924)
Google Scholar
P. Wu, J. Huang, V. Meunier, B.G. Sumpter, R. Qiao, Complex capacitance scaling in ionic liquids-filled nanopores. ACS Nano 5(11), 9044–9051 (2011). https://doi.org/10.1021/nn203260w
Article
Google Scholar
G. Feng, R. Qiao, J. Huang, B.G. Sumpter, V. Meunier, Ion distribution in electrified micropores and its role in the anomalous enhancement of capacitance. ACS Nano 4(4), 2382–2390 (2010). https://doi.org/10.1021/nn100126w
Article
Google Scholar
D.-E. Jiang, Z. Jin, J. Wu, Oscillation of capacitance inside nanopores. Nano Lett. 11(12), 5373–5377 (2011). https://doi.org/10.1021/nl202952d
Article
Google Scholar
C. Merlet, B. Rotenberg, P.A. Madden, P.-L. Taberna, P. Simon, Y. Gogotsi, M. Salanne, On the molecular origin of supercapacitance in nanoporous carbon electrodes. Nat. Mater. 11(4), 306–310 (2012). https://doi.org/10.1038/nmat3260
Article
Google Scholar
Y. Shim, H.J. Kim, Nanoporous carbon supercapacitors in an ionic liquid: a computer simulation study. ACS Nano 4(4), 2345–2355 (2010). https://doi.org/10.1021/nn901916m
Article
Google Scholar
C. Largeot, C. Portet, J. Chmiola, P.L. Taberna, Y. Gogotsi, P. Simon, Relation between the ion size and pore size for an electric double-layer capacitor. J. Am. Chem. Soc. 130(9), 2730–2731 (2008). https://doi.org/10.1021/ja7106178
Article
Google Scholar
Z. Bo, H. Yang, S. Zhang, J. Yang, J. Yan, K. Cen, Molecular insights into aqueous NaCl electrolytes confined within vertically-oriented graphenes. Sci. Rep. 5, 14652 (2015). https://doi.org/10.1038/srep14652
Article
Google Scholar
C. Merlet, C. Péan, B. Rotenberg, P.A. Madden, B. Daffos, P.L. Taberna, P. Simon, M. Salanne, Highly confined ions store charge more efficiently in supercapacitors. Nat. Commun. 4, 2701 (2013). https://doi.org/10.1038/ncomms3701
Article
Google Scholar
J. Vatamanu, L. Cao, O. Borodin, D. Bedrov, G.D. Smith, On the influence of surface topography on the electric double layer structure and differential capacitance of graphite/ionic liquid interfaces. J. Phys. Chem. Lett. 2(17), 2267–2272 (2011). https://doi.org/10.1021/jz200879a
Article
Google Scholar
L. Xing, J. Vatamanu, G.D. Smith, D. Bedrov, Nanopatterning of electrode surfaces as a potential route to improve the energy density of electric double-layer capacitors: insight from molecular simulations. J. Phys. Chem. Lett. 3(9), 1124–1129 (2012). https://doi.org/10.1021/jz300253p
Article
Google Scholar
J. Vatamanu, M. Vatamanu, D. Bedrov, Non-faradaic energy storage by room temperature ionic liquids in nanoporous electrodes. ACS Nano 9(6), 5999–6017 (2015). https://doi.org/10.1021/acsnano.5b00945
Article
Google Scholar
E. Paek, A.J. Pak, K.E. Kweon, G.S. Hwang, On the origin of the enhanced supercapacitor performance of nitrogen-doped graphene. J. Phys. Chem. C 117(11), 5610–5616 (2013). https://doi.org/10.1021/jp312490q
Article
Google Scholar
S. Kerisit, B. Schwenzer, M. Vijayakumar, Effects of oxygen-containing functional groups on supercapacitor performance. J. Phys. Chem. Lett. 5(13), 650–653 (2014). https://doi.org/10.1021/jz500900t
Article
Google Scholar
S.-W. Park, A.D. DeYoung, N.R. Dhumal, Y. Shim, H.J. Kim, Y. Jung, Computer simulation study of graphene oxide supercapacitors: charge screening mechanism. J. Phys. Chem. Lett. 7(7), 1180–1186 (2016). https://doi.org/10.1021/acs.jpclett.6b00202
Article
Google Scholar
J. Vatamanu, O. Borodin, D. Bedrov, G.D. Smith, Molecular dynamics simulation study of the interfacial structure and differential capacitance of alkylimidazolium bis(trifluoromethanesulfonyl)imide [CNMIM][TFSI] ionic liquids at graphite electrodes. J. Phys. Chem. C 116(14), 7940–7951 (2012). https://doi.org/10.1021/jp301399b
Article
Google Scholar
H.M. Jeong, J.W. Lee, W.H. Shin, Y.J. Choi, H.J. Shin, J.K. Kang, J.W. Choi, Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes. Nano Lett. 11(6), 2472–2477 (2011). https://doi.org/10.1021/nl2009058
Article
Google Scholar
A.J. Pak, E. Paek, G.S. Hwang, Impact of graphene edges on enhancing the performance of electrochemical double layer capacitors. J. Phys. Chem. C 118(38), 21770–21777 (2014). https://doi.org/10.1021/jp504458z
Article
Google Scholar
A.C. Forse, C. Merlet, J.M. Griffin, C.P. Grey, New perspectives on the charging mechanisms of supercapacitors. J. Am. Chem. Soc. 138(18), 5731–5744 (2016). https://doi.org/10.1021/jacs.6b02115
Article
Google Scholar
H. Wang, T.K.J. Koester, N.M. Trease, J. Segalini, P.-L. Taberna, P. Simon, Y. Gogotsi, C.P. Grey, Real-time NMR studies of electrochemical double-layer capacitors. J. Am. Chem. Soc. 133(48), 19270–19273 (2011). https://doi.org/10.1021/ja2072115
Article
Google Scholar
M.D. Levi, G. Salitra, N. Levy, D. Aurbach, J. Maier, Application of a quartz-crystal microbalance to measure ionic fluxes in microporous carbons for energy storage. Nat. Mater. 8(11), 872–875 (2009). https://doi.org/10.1038/nmat2559
Article
Google Scholar
M.D. Levi, N. Levy, S. Sigalov, G. Salitra, D. Aurbach, J. Maier, Electrochemical quartz crystal microbalance (EQCM) studies of ions and solvents insertion into highly porous activated carbons. J. Am. Chem. Soc. 132(38), 13220–13222 (2010). https://doi.org/10.1021/ja104391g
Article
Google Scholar
K. Li, Z. Bo, J. Yan, K. Cen, Solid-state NMR study of ion adsorption and charge storage in graphene film supercapacitor electrodes. Sci. Rep. 6, 39689 (2016). https://doi.org/10.1038/srep39689
Article
Google Scholar
W.-Y. Tsai, P.-L. Taberna, P. Simon, Electrochemical quartz crystal microbalance (EQCM) study of ion dynamics in nanoporous carbons. J. Am. Chem. Soc. 136(24), 8722–8728 (2014). https://doi.org/10.1021/ja503449w
Article
Google Scholar
J.M. Griffin, A.C. Forse, W.-Y. Tsai, P.-L. Taberna, P. Simon, C.P. Grey, In situ NMR and electrochemical quartz crystal microbalance techniques reveal the structure of the electrical double layer in supercapacitors. Nat. Mater. 14(8), 812–819 (2015). https://doi.org/10.1038/nmat4318
Article
Google Scholar
A.C. Forse, J.M. Griffin, H. Wang, N.M. Trease, V. Presser, Y. Gogotsi, P. Simon, C.P. Grey, Nuclear magnetic resonance study of ion adsorption on microporous carbide-derived carbon. Phys. Chem. Chem. Phys. 15(20), 7722–7730 (2013). https://doi.org/10.1039/c3cp51210j
Article
Google Scholar
S. Leyva-Garcia, K. Nueangnoraj, D. Lozano-Castello, H. Nishihara, T. Kyotani, E. Marallon, D. Cazorla-Amoros, Characterization of a zeolite-templated carbon by electrochemical quartz crystal microbalance and in situ Raman spectroscopy. Carbon 89, 63–73 (2015). https://doi.org/10.1016/j.carbon.2015.03.016
Article
Google Scholar
Q. Zhang, K. Scrafford, M. Li, Z. Cao, Z. Xia, P.M. Ajayan, B. Wei, Anomalous capacitive behaviors of graphene oxide based solid-state supercapacitors. Nano Lett. 14(4), 1938–1943 (2014). https://doi.org/10.1021/nl4047784
Article
Google Scholar
J.N. Barisci, G.G. Wallace, R.H. Baughman, Electrochemical quartz crystal microbalance studies of single-wall carbon nanotubes in aqueous and non-aqueous solutions. Electrochim. Acta 46(4), 509–517 (2000). https://doi.org/10.1016/s0013-4686(00)00634-4
Article
Google Scholar
B. Peng, H. Zhang, H. Shao, Y. Xu, X. Zhang, H. Zhu, Thermal conductivity of monolayer MOS2, MOSe2, and WS2: interplay of mass effect, interatomic bonding and anharmonicity. RSC Adv. 6(7), 5767–5773 (2016). https://doi.org/10.1039/c5ra19747c
Article
Google Scholar
X. Liu, G. Zhang, Q.-X. Pei, Y.-W. Zhang, Phonon thermal conductivity of monolayer MOS2 sheet and nanoribbons. Appl. Phys. Lett. 103(13), 133113 (2013). https://doi.org/10.1063/1.4823509
Article
Google Scholar
J.-W. Jiang, H.S. Park, T. Rabczuk, Molecular dynamics simulations of single-layer molybdenum disulphide (MOS2): Stillinger–Weber parametrization, mechanical properties, and thermal conductivity. J. Appl. Phys. 114(6), 064307 (2013). https://doi.org/10.1063/1.4818414
Article
Google Scholar
Y. Zhai, Y. Dou, D. Zhao, P.F. Fulvio, R.T. Mayes, S. Dai, Carbon materials for chemical capacitive energy storage. Adv. Mater. 23(42), 4828–4850 (2011). https://doi.org/10.1002/adma.201100984
Article
Google Scholar
J. Lee, J. Kim, T. Hyeon, Recent progress in the synthesis of porous carbon materials. Adv. Mater. 18(16), 2073–2094 (2006). https://doi.org/10.1002/adma.200501576
Article
Google Scholar
C. Liu, F. Li, L.-P. Ma, H.-M. Cheng, Advanced materials for energy storage. Adv. Mater. 22(8), E28–E62 (2010). https://doi.org/10.1002/adma.200903328
Article
Google Scholar
Z. Yu, L. Tetard, L. Zhai, J. Thomas, Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Energy Environ. Sci. 8(3), 702–730 (2015). https://doi.org/10.1039/c4ee03229b
Article
Google Scholar
R.L. McGreevy, L. Pusztai, Reverse Monte Carlo simulation: a new technique for the determination of disordered structures. Mol. Simul. 1(6), 359–367 (1988). https://doi.org/10.1080/08927028808080958
Article
Google Scholar
C.H. Turner, J. Pikunic, K.E. Gubbins, Influence of chemical and physical surface heterogeneity on chemical reaction equilibria in carbon micropores. Mol. Phys. 99(24), 1991–2001 (2001). https://doi.org/10.1080/00268970110087254
Article
Google Scholar
N.N. Rajput, J. Monk, F.R. Hung, Ionic liquids confined in a realistic activated carbon model: a molecular simulation study. J. Phys. Chem. C 118(3), 1540–1553 (2014). https://doi.org/10.1021/jp408617j
Article
Google Scholar
V. Presser, M. Heon, Y. Gogotsi, Carbide-derived carbons—from porous networks to nanotubes and graphene. Adv. Funct. Mater. 21(5), 810–833 (2011). https://doi.org/10.1002/adfm.201002094
Article
Google Scholar
W.T. Gu, G. Yushin, Review of nanostructured carbon materials for electrochemical capacitor applications: advantages and limitations of activated carbon, carbide-derived carbon, zeolite-templated carbon, carbon aerogels, carbon nanotubes, onion-like carbon, and graphene. Wiley Interdiscip. Rev. Energy 3(5), 424–473 (2014). https://doi.org/10.1002/wene.102
Article
Google Scholar
D.S. Su, R. Schloegl, Nanostructured carbon and carbon nanocomposites for electrochemical energy storage applications. Chemsuschem 3(2), 136–168 (2010). https://doi.org/10.1002/cssc.200900182
Article
Google Scholar
J.C. Palmer, A. Llobet, S.H. Yeon, J.E. Fischer, Y. Shi, Y. Gogotsi, K.E. Gubbins, Modeling the structural evolution of carbide-derived carbons using quenched molecular dynamics. Carbon 48(4), 1116–1123 (2010). https://doi.org/10.1016/j.carbon.2009.11.033
Article
Google Scholar
C. Pean, B. Daffos, B. Rotenberg, P. Levitz, M. Haefele, P.-L. Taberna, P. Simon, M. Salanne, Confinement, desolvation, and electrosorption effects on the diffusion of ions in nanoporous carbon electrodes. J. Am. Chem. Soc. 137(39), 12627–12632 (2015). https://doi.org/10.1021/jacs.5b07416
Article
Google Scholar
C. Pean, C. Merlet, B. Rotenberg, P.A. Madden, P.-L. Taberna, B. Daffos, M. Salanne, P. Simon, On the dynamics of charging in nanoporous carbon-based supercapacitors. ACS Nano 8(2), 1576–1583 (2014). https://doi.org/10.1021/nn4058243
Article
Google Scholar
M.Z. Bazant, B.D. Storey, A.A. Kornyshev, Double layer in ionic liquids: overscreening versus crowding. Phys. Rev. Lett. 106(4), 046102 (2011). https://doi.org/10.1103/PhysRevLett.106.046102
Article
Google Scholar
C. Lian, D.-E. Jiang, H. Liu, J. Wu, A generic model for electric double layers in porous electrodes. J. Phys. Chem. C 120(16), 8704–8710 (2016). https://doi.org/10.1021/acs.jpcc.6b00964
Article
Google Scholar
A.J. Pak, G.S. Hwang, Molecular insights into the complex relationship between capacitance and pore morphology in nanoporous carbon-based supercapacitors. ACS Appl. Mater. Interfaces 8(50), 34659–34667 (2016). https://doi.org/10.1021/acsami.6b11192
Article
Google Scholar
S. Schweizer, R. Meissner, M. Amkreutz, K. Thiel, P. Schiffels, J. Landwehr, B.J.M. Etzold, J.-R. Hill, Molecular modeling of microporous structures of carbide-derived carbon-based supercapacitors. J. Phys. Chem. C 121(13), 7221–7231 (2017). https://doi.org/10.1021/acs.jpcc.6b12774
Article
Google Scholar
M. Chen, S. Li, G. Feng, The influence of anion shape on the electrical double layer microstructure and capacitance of ionic liquids-based supercapacitors by molecular simulations. Molecules 22(2), 241 (2017). https://doi.org/10.3390/molecules22020241
Article
Google Scholar
C. Merlet, C. Péan, B. Rotenberg, P.A. Madden, P. Simon, M. Salanne, Simulating supercapacitors: can we model electrodes as constant charge surfaces? J. Phys. Chem. Lett. 4(2), 264–268 (2013). https://doi.org/10.1021/jz3019226
Article
Google Scholar
J. Yang, Z. Bo, H. Yang, H. Qi, J. Kong, J. Yan, K. Cen, Reliability of constant charge method for molecular dynamics simulations on EDLCs in nanometer and sub-nanometer spaces. Chemelectrochem 4(10), 2486–2493 (2017). https://doi.org/10.1002/celc.201700447
Article
Google Scholar
J. Vatamanu, D. Bedrov, O. Borodin, On the application of constant electrode potential simulation techniques in atomistic modelling of electric double layers. Mol. Simul. 43(10–11), 838–849 (2017). https://doi.org/10.1080/08927022.2017.1279287
Article
Google Scholar
L.L. Zhang, R. Zhou, X.S. Zhao, Graphene-based materials as supercapacitor electrodes. J. Mater. Chem. 20(29), 5983–5992 (2010). https://doi.org/10.1039/c000417k
Article
Google Scholar
J. Chen, C. Li, G. Shi, Graphene materials for electrochemical capacitors. J. Phys. Chem. Lett. 4(8), 1244–1253 (2013). https://doi.org/10.1021/jz400160k
Article
Google Scholar
R. Raccichini, A. Varzi, S. Passerini, B. Scrosati, The role of graphene for electrochemical energy storage. Nat. Mater. 14(3), 271–279 (2015). https://doi.org/10.1038/nmat4170
Article
Google Scholar
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004). https://doi.org/10.1126/science.1102896
Article
Google Scholar
M.D. Stoller, S. Park, Y. Zhu, J. An, R.S. Ruoff, Graphene-based ultracapacitors. Nano Lett. 8(10), 3498–3502 (2008). https://doi.org/10.1021/nl802558y
Article
Google Scholar
J. Xia, F. Chen, J. Li, N. Tao, Measurement of the quantum capacitance of graphene. Nat. Nanotechnol. 4(8), 505–509 (2009). https://doi.org/10.1038/nnano.2009.177
Article
Google Scholar
C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887), 385–388 (2008). https://doi.org/10.1126/science.1157996
Article
Google Scholar
A.A. Kornyshev, Double-layer in ionic liquids: paradigm change? J. Phys. Chem. B 111(20), 5545–5557 (2007). https://doi.org/10.1021/jp067857o
Article
Google Scholar
J. Vatamanu, L. Xing, W. Li, D. Bedrov, Influence of temperature on the capacitance of ionic liquid electrolytes on charged surfaces. Phys. Chem. Chem. Phys. 16(11), 5174–5182 (2014). https://doi.org/10.1039/c3cp54705a
Article
Google Scholar
Z. Hu, J. Vatamanu, O. Borodin, D. Bedrov, A comparative study of alkylimidazolium room temperature ionic liquids with FSI and TFSI anions near charged electrodes. Electrochim. Acta 145, 40–52 (2014). https://doi.org/10.1016/j.electacta.2014.08.072
Article
Google Scholar
H. Zongzhi, V. Jenel, B. Oleg, B. Dmitry, A molecular dynamics simulation study of the electric double layer and capacitance of [BMIM][PF6] and [BMIM][BF4] room temperature ionic liquids near charged surfaces. Phys. Chem. Chem. Phys. 15(34), 14234–14247 (2013). https://doi.org/10.1039/c3cp51218e
Article
Google Scholar
J. Hafner, Ab-initio simulations of materials using VASP: density-functional theory and beyond. J. Comput. Chem. 29(13), 2044–2078 (2008). https://doi.org/10.1002/jcc.21057
Article
Google Scholar
J. Vatamanu, X. Ni, F. Liu, D. Bedrov, Tailoring graphene-based electrodes from semiconducting to metallic to increase the energy density in supercapacitors. Nanotechnology 26(46), 464001 (2015). https://doi.org/10.1088/0957-4484/26/46/464001
Article
Google Scholar
L. Chen, X. Li, C. Ma, M. Wang, J. Zhou, Interaction and quantum capacitance of nitrogen/sulfur co-doped graphene: a theoretical calculation. J. Phys. Chem. C 121(34), 18344–18350 (2017). https://doi.org/10.1021/acs.jpcc.7b04551
Article
Google Scholar
S. Mao, H. Pu, J. Chen, Graphene oxide and its reduction: modeling and experimental progress. RSC Adv. 2(7), 2643–2662 (2012). https://doi.org/10.1039/C2RA00663D
Article
Google Scholar
A.D. DeYoung, S.-W. Park, N.R. Dhumal, Y. Shim, Y. Jung, H.J. Kim, Graphene oxide supercapacitors: a computer simulation study. J. Phys. Chem. C 118(32), 18472–18480 (2014). https://doi.org/10.1021/jp5072583
Article
Google Scholar
K. Xu, X. Ji, C. Chen, H. Wan, L. Miao, J. Jiang, Electrochemical double layer near polar reduced graphene oxide electrode: insights from molecular dynamic study. Electrochim. Acta 166, 142–149 (2015). https://doi.org/10.1016/j.electacta.2015.03.101
Article
Google Scholar
S. Li, G. Feng, P.T. Cummings, Interfaces of dicationic ionic liquids and graphene: a molecular dynamics simulation study. J. Phys-Condens. Matter 26(28), 284106 (2014). https://doi.org/10.1088/0953-8984/26/28/284106
Article
Google Scholar
S. Jo, S.-W. Park, Y. Shim, Y. Jung, Effects of alkyl chain length on interfacial structure and differential capacitance in graphene supercapacitors: a molecular dynamics simulation study. Electrochim. Acta 247, 634–645 (2017). https://doi.org/10.1016/j.electacta.2017.06.169
Article
Google Scholar
X. Liu, Y. Wang, S. Li, T. Yan, Effects of anion on the electric double layer of imidazolium-based ionic liquids on graphite electrode by molecular dynamics simulation. Electrochim. Acta 184, 164–170 (2015). https://doi.org/10.1016/j.electacta.2015.10.064
Article
Google Scholar
J. Vatamanu, O. Borodin, G.D. Smith, Molecular simulations of the electric double layer structure, differential capacitance, and charging kinetics for n-methyl-n-propylpyrrolidinium bis(fluorosulfonyl)imide at graphite electrodes. J. Phys. Chem. B 115(12), 3073–3084 (2011). https://doi.org/10.1021/jp2001207
Article
Google Scholar
M. Wu, W. Li, S. Li, G. Feng, Capacitive performance of amino acid ionic liquid electrolyte-based supercapacitors by molecular dynamics simulation. RSC Adv. 7(46), 28945–28950 (2017). https://doi.org/10.1039/c7ra00443e
Article
Google Scholar
E. Sedghamiz, M. Moosavi, Tricationic ionic liquids: structural and dynamical properties via molecular dynamics simulations. J. Phys. Chem. B 121(8), 1877–1892 (2017). https://doi.org/10.1021/acs.jpcb.6b10766
Article
Google Scholar
Y.N. Ahn, S.H. Lee, G.S. Lee, H. Kim, Effect of alkyl branches on the thermal stability of quaternary ammonium cations in organic electrolytes for electrochemical double layer capacitors. Phys. Chem. Chem. Phys. 19(30), 19959–19966 (2017). https://doi.org/10.1039/c7cp03209a
Article
Google Scholar
J. Vatamanu, O. Borodin, Ramifications of water-in-salt interfacial structure at charged electrodes for electrolyte electrochemical stability. J. Phys. Chem. Lett. 8(18), 4362–4367 (2017). https://doi.org/10.1021/acs.jpclett.7b01879
Article
Google Scholar
R.S. Kuhnel, D. Reber, A. Remhof, R. Figi, D. Bleiner, C. Battaglia, “Water-in-salt” electrolytes enable the use of cost-effective aluminum current collectors for aqueous high-voltage batteries. Chem. Commun. 52(68), 10435–10438 (2016). https://doi.org/10.1039/c6cc03969c
Article
Google Scholar
S. Kondrat, P. Wu, R. Qiao, A.A. Kornyshev, Accelerating charging dynamics in subnanometre pores. Nat. Mater. 13(4), 387–393 (2014). https://doi.org/10.1038/nmat3916
Article
Google Scholar
G. Feng, P.T. Cummings, Supercapacitor capacitance exhibits oscillatory behavior as a function of nanopore size. J. Phys. Chem. Lett. 2(22), 2859–2864 (2011). https://doi.org/10.1021/jz201312e
Article
Google Scholar
S.R. Varanasi, S.K. Bhatia, Capacitance optimization in nanoscale electrochemical supercapacitors. J. Phys. Chem. C 119(31), 17573–17584 (2015). https://doi.org/10.1021/acs.jpcc.5b04254
Article
Google Scholar
D.E. Jiang, J. Wu, Unusual effects of solvent polarity on capacitance for organic electrolytes in a nanoporous electrode. Nanoscale 6(10), 5545–5550 (2014). https://doi.org/10.1039/C4NR00046C
Article
Google Scholar
D.-E. Jiang, Z. Jin, D. Henderson, J. Wu, Solvent effect on the pore-size dependence of an organic electrolyte supercapacitor. J. Phys. Chem. Lett. 3(13), 1727–1731 (2012). https://doi.org/10.1021/jz3004624
Article
Google Scholar
R. Burt, K. Breitsprecher, B. Daffos, P.-L. Taberna, P. Simon, G. Birkett, X.S. Zhao, C. Holm, M. Salanne, Capacitance of nanoporous carbon-based supercapacitors is a trade-off between the concentration and the separability of the ions. J. Phys. Chem. Lett. 7(19), 4015–4021 (2016). https://doi.org/10.1021/acs.jpclett.6b01787
Article
Google Scholar
B. Uralcan, I.A. Aksay, P.G. Debenedetti, D.T. Limmer, Concentration fluctuations and capacitive response in dense ionic solutions. J. Phys. Chem. Lett. 7(13), 2333–2338 (2016). https://doi.org/10.1021/acs.jpclett.6b00859
Article
Google Scholar
M.H. Kowsari, L. Tohidifar, Tracing dynamics, self-diffusion, and nanoscale structural heterogeneity of pure and binary mixtures of ionic liquid 1-hexyl-2,3-dimethylimidazolium bis(fluorosulfonyl)imide with acetonitrile: insights from molecular dynamics simulations. J. Phys. Chem. B 120(41), 10824–10838 (2016). https://doi.org/10.1021/acs.jpcb.6b08396
Article
Google Scholar
Q. Zhang, P. Xie, X. Wang, X. Yu, Z. Shi, S. Zhao, Thermodynamic and transport properties of spiro-(1,1′)-bipyrrolidinium tetrafluoroborate and acetonitrile mixtures: a molecular dynamics study. Chin. Phys. B 25(6), 066102 (2016). https://doi.org/10.1088/1674-1056/25/6/066102
Article
Google Scholar
H. Yang, J. Yang, Z. Bo, X. Chen, X. Shuai, J. Kong, J. Yan, K. Cen, Kinetic-dominated charging mechanism within representative aqueous electrolyte-based electric double-layer capacitors. J. Phys. Chem. Lett. 8(15), 3703–3710 (2017). https://doi.org/10.1021/acs.jpclett.7b01525
Article
Google Scholar
C. Lian, K. Liu, H. Liu, J. Wu, Impurity effects on charging mechanism and energy storage of nanoporous supercapacitors. J. Phys. Chem. C 121(26), 14066–14072 (2017). https://doi.org/10.1021/acs.jpcc.7b04869
Article
Google Scholar
P. Wu, J. Huang, V. Meunier, B.G. Sumpter, R. Qiao, Voltage dependent charge storage modes and capacity in subnanometer pores. J. Phys. Chem. Lett. 3(13), 1732–1737 (2012). https://doi.org/10.1021/jz300506j
Article
Google Scholar
J. Vatamanu, O. Borodin, G.D. Smith, Molecular insights into the potential and temperature dependences of the differential capacitance of a room-temperature ionic liquid at graphite electrodes. J. Am. Chem. Soc. 132(42), 14825–14833 (2010). https://doi.org/10.1021/ja104273r
Article
Google Scholar
R.K. Kalluri, D. Konatham, A. Striolo, Aqueous NaCl solutions within charged carbon-slit pores: partition coefficients and density distributions from molecular dynamics simulations. J. Phys. Chem. C 115(28), 13786–13795 (2011). https://doi.org/10.1021/jp203086x
Article
Google Scholar
T. Ohba, N. Kojima, H. Kanoh, K. Kaneko, Unique hydrogen-bonded structure of water around Ca ions confined in carbon slit pores. J. Phys. Chem. C 113(29), 12622–12624 (2009). https://doi.org/10.1021/jp9030688
Article
Google Scholar
N.N. Rajput, J. Monk, R. Singh, F.R. Hung, On the influence of pore size and pore loading on structural and dynamical heterogeneities of an ionic liquid confined in a slit nanopore. J. Phys. Chem. C 116(8), 5169–5181 (2012). https://doi.org/10.1021/jp212440f
Article
Google Scholar
S. Salemi, H. Akbarzadeh, S. Abdollahzadeh, Nano-confined ionic liquid [emim][PF6] between graphite sheets: a molecular dynamics study. J. Mol. Liq. 215, 512–519 (2016). https://doi.org/10.1016/j.molliq.2016.01.035
Article
Google Scholar
J. Kong, Z. Bo, H. Yang, J. Yang, X. Shuai, J. Yan, K. Cen, Temperature dependence of ion diffusion coefficients in nacl electrolyte confined within graphene nanochannels. Phys. Chem. Chem. Phys. 19(11), 7678–7688 (2017). https://doi.org/10.1039/c6cp08752c
Article
Google Scholar
S.A. Kislenko, R.H. Amirov, I.S. Samoylov, Influence of temperature on the structure and dynamics of the [BMIM][PF6] ionic liquid/graphite interface. Phys. Chem. Chem. Phys. 12(37), 11245–11250 (2010). https://doi.org/10.1039/c0cp00220h
Article
Google Scholar
R. Singh, J. Monk, F.R. Hung, Heterogeneity in the dynamics of the ionic liquid [BMIM+][PF6
−] confined in a slit nanopore. J. Phys. Chem. C 115(33), 16544–16554 (2011). https://doi.org/10.1021/jp2046118
Article
Google Scholar
W. Yuan, Y. Zhou, Y. Li, C. Li, H. Peng, J. Zhang, Z. Liu, L. Dai, G. Shi, The edge- and basal-plane-specific electrochemistry of a single-layer graphene sheet. Sci. Rep. 3, 2248 (2013). https://doi.org/10.1038/srep02248
Article
Google Scholar
C. Zhan, Y. Zhang, P.T. Cummings, D.-E. Jiang, Computational insight into the capacitive performance of graphene edge planes. Carbon 116, 278–285 (2017). https://doi.org/10.1016/j.carbon.2017.01.104
Article
Google Scholar
V.N. Popov, Carbon nanotubes: properties and application. Mater. Sci. Eng. R-Rep. 43(3), 61–102 (2004). https://doi.org/10.1016/j.mser.2003.10.001
Article
Google Scholar
H.J. Dai, Carbon nanotubes: opportunities and challenges. Surf. Sci. 500(1–3), 218–241 (2002). https://doi.org/10.1016/s0039-6028(01)01558-8
Article
Google Scholar
M. Trojanowicz, Analytical applications of carbon nanotubes: a review. Trac-trends Anal. Chem. 25(5), 480–489 (2006). https://doi.org/10.1016/j.trac.2005.11.008
Article
Google Scholar
L. Yang, B.H. Fishbine, A. Migliori, L.R. Pratt, Molecular simulation of electric double-layer capacitors based on carbon nanotube forests. J. Am. Chem. Soc. 131(34), 12373–12376 (2009). https://doi.org/10.1021/ja9044554
Article
Google Scholar
A. Dive, S. Banerjee, Ion storage in nanoconfined interstices between vertically aligned nanotubes in electric double-layer capacitors. J. Electrochem. Energy Convers. 15(1), 011001 (2017). https://doi.org/10.1115/1.4037582
Article
Google Scholar
K. Dong, G. Zhou, X. Liu, X. Yao, S. Zhang, A. Lyubartsev, Structural evidence for the ordered crystallites of ionic liquid in confined carbon nanotubes. J. Phys. Chem. C 113(23), 10013–10020 (2009). https://doi.org/10.1021/jp900533k
Article
Google Scholar
O.N. Kalugin, V.V. Chaban, V.V. Loskutov, O.V. Prezhdo, Uniform diffusion of acetonitrile inside carbon nanotubes favors supercapacitor performance. Nano Lett. 8(8), 2126–2130 (2008). https://doi.org/10.1021/nl072976g
Article
Google Scholar
R.J. Mashl, S. Joseph, N.R. Aluru, E. Jakobsson, Anomalously immobilized water: a new water phase induced by confinement in nanotubes. Nano Lett. 3(5), 589–592 (2003). https://doi.org/10.1021/nl0340226
Article
Google Scholar
L. Yang, S. Garde, Modeling the selective partitioning of cations into negatively charged nanopores in water. J. Chem. Phys. 126(8), 084706 (2007). https://doi.org/10.1063/1.2464083
Article
Google Scholar
T. Ohba, Fast ion transportation associated with recovering hydration shells in a nanoelectrolyte between conical carbon nanopores during charging cycles. J. Phys. Chem. C 121(19), 10439–10444 (2017). https://doi.org/10.1021/acs.jpcc.7b02326
Article
Google Scholar
D. Pech, M. Brunet, H. Durou, P. Huang, V. Mochalin, Y. Gogotsi, P.-L. Taberna, P. Simon, Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nat. Nanotechnol. 5(9), 651–654 (2010). https://doi.org/10.1038/nnano.2010.162
Article
Google Scholar
G. Feng, D.-E. Jiang, P.T. Cummings, Curvature effect on the capacitance of electric double layers at ionic liquid/onion-like carbon interfaces. J. Chem. Theory Comput. 8(3), 1058–1063 (2012). https://doi.org/10.1021/ct200914j
Article
Google Scholar