S. Sahoo, Socio-ethical issues and nanotechnology
development: perspectives from India, in 2010 10th IEEE Conference on Nanotechnology (IEEE-NANO), Seoul, South Korea, USA, 17–20 August 2010 (IEEE, 2010), pp. 1205–1210. doi:10.1109/NANO.2010.5697887
V. Yadav, Nanotechnology, big things from a tiny world: a review. AEEE 3(6), 771–778 (2013)
Google Scholar
S. Pal, Y.K. Tak, J.M. Song, Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol. 73(6), 1712–1720 (2007). doi:10.1128/AEM.02218-06
Google Scholar
B. Ashe, A Detail investigation to observe the effect of zinc oxide and Silver nanoparticles in biological system, M.Sc. (Roll NO-607bm004), National Institute of Technology, 2011
C. Buzea, I.I. Pacheco, K. Robbie, Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2(4), MR17–MR71 (2007). doi:10.1116/1.2815690
Google Scholar
J.W. Rasmussen, E. Martinez, P. Louka, D.G. Wingett, Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert Opin. Drug Deliv. 7(9), 1063–1077 (2010). doi:10.1517/17425247.2010.502560
Google Scholar
R. Brayner, R. Ferrari-Iliou, N. Brivois, S. Djediat, M.F. Benedetti, F. Fiévet, Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett. 6(4), 866–870 (2006). doi:10.1021/nl052326h
Google Scholar
N. Jones, B. Ray, K.T. Ranjit, A.C. Manna, Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol. Lett. 279(1), 71–76 (2008). doi:10.1111/j.1574-6968.2007.01012.x
Google Scholar
R. Jalal, E.K. Goharshadi, M. Abareshi, M. Moosavi, A. Yousefi, P. Nancarrow, ZnO nanofluids: green synthesis, characterization, and antibacterial activity. Mater. Chem. Phys. 121(1), 198–201 (2010). doi:10.1016/j.matchemphys.2010.01.020
Google Scholar
J.T. Seil, T.J. Webster, Antimicrobial applications of nanotechnology: methods and literature. Int. J. Nanomed. 7, 2767–2781 (2012). doi:10.2147/IJN.S24805
Google Scholar
Z. Emami-Karvani, P. Chehrazi, Antibacterial activity of ZnO nanoparticle on gram-positive and gram-negative bacteria. Afr. J. Microbiol. Res. 5(12), 1368–1373 (2011)
Google Scholar
N. Padmavathy, R. Vijayaraghavan, Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study. Sci. Technol. Adv. Mater. 9(3), 035004 (2008). doi:10.1088/1468-6996/9/3/035004
Google Scholar
K.R. Raghupathi, R.T. Koodali, A.C. Manna, Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir 27(7), 4020–4028 (2011). doi:10.1371/journal.pone.0085981
Google Scholar
G. Colon, B.C. Ward, T.J. Webster, Increased osteoblast and decreased Staphylococcus epidermidis functions on nanophase ZnO and TiO2. J. Biomed. Mater. Res. 78(3), 595–604 (2006). doi:10.1002/jbm.a.30789
Google Scholar
J.T. Seil, E.N. Taylor, T.J. Webster, Reduced
activity of Staphylococcus epidermidis in the presence of sonicated piezoelectric zinc oxide nanoparticles, in 2009 IEEE 35th Annual Northeast Bioengineering Conference, Boston, MA, USA, 3–5 April 2009 (IEEE, 2009), pp. 1–2. doi:10.1109/NEBC.2009.4967674
K. Kotloff, J. Winickoff, B. Ivanoff, J.D. Clemens, D. Swerdlow, P. Sansonetti, G. Adak, M. Levine, Global burden of Shigella infections: implications for vaccine development and implementation of control strategies. Bull. World Health Organ 77(8), 651–666 (1999)
Google Scholar
Y.G. Gertrude Neumark, I. Kuskovsky, in Springer Handbook of Electronic and Photonic Materials: Doping Aspects of Zn-Based Wide-Band-Gap Semiconductors, ed. by P.C. Safa Kasap (Springer, 2007), pp. 843–854. doi:10.1007/978-0-387-29185-7_35
Z. Fan, J.G. Lu, Zinc oxide nanostructures: synthesis and properties. J. Nanosci. Nanotechnol. 5(10), 1561–1573 (2005). doi:10.1166/jnn.2005.182
Google Scholar
Z.L. Wang, Zinc oxide nanostructures: growth, properties and applications. J. Phys.: Condens. Matter 16(25), R829–R858 (2004). doi:10.1088/0953-8984/16/25/R01
Google Scholar
Z.L. Wang, J. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312(5771), 242–246 (2006). doi:10.1126/science.1124005
Google Scholar
A. Janotti, C.G. Van de Walle, Fundamentals of zinc oxide as a semiconductor. Rep. Prog. Phys. 72(12), 126501 (2009). doi:10.1088/0034-4885/72/12/126501
Google Scholar
Y. Zhang, M.K. Ram, E.K. Stefanakos, D.Y. Goswami, Synthesis, characterization, and applications of ZnO nanowires. J. Nanomater. 2012, 1–22 (2012). doi:10.1155/2012/624520
MATH
Google Scholar
L. Schmidt-Mende, J.L. MacManus-Driscoll, ZnO-nanostructures, defects, and devices. Mater. Today 10(5), 40–48 (2007). doi:10.1016/S1369-7021(07)70078-0
Google Scholar
J. Wellings, N. Chaure, S. Heavens, I. Dharmadasa, Growth and characterisation of electrodeposited ZnO thin films. Thin Solid Films 516(12), 3893–3898 (2008). doi:10.1016/j.tsf.2007.07.156
Google Scholar
Z. Song, T.A. Kelf, W.H. Sanchez, M.S. Roberts, J. Rička, M. Frenz, A.V. Zvyagin, Characterization of optical properties of ZnO nanoparticles for quantitative imaging of transdermal transport. Biomed. Opt. Express 2(12), 3321–3333 (2011). doi:10.1364/BOE.2.003321
Google Scholar
Y. Mishra, V. Chakravadhanula, V. Hrkac, S. Jebril, D. Agarwal, S. Mohapatra, D. Avasthi, L. Kienle, R. Adelung, Crystal growth behaviour in Au–ZnO nanocomposite under different annealing environments and photoswitchability. J. Appl. Phys. 112(6), 064308 (2012). doi:10.1063/1.4752469
Google Scholar
N. Yahya, H. Daud, N.A. Tajuddin, H.M. Daud, A. Shafie, P. Puspitasari, Application of ZnO nanoparticles EM wave detector prepared by sol–gel and self-combustion techniques. J. Nano Res. 11, 25–34 (2010). doi:10.4028/www.scientific.net/JNanoR.11.25
Google Scholar
S. Mahmud, One-dimensional growth of zinc oxide nanostructures from large micro-particles in a highly rapid synthesis. J. Alloys Compd. 509(9), 4035–4040 (2011). doi:10.1016/j.jallcom.2011.01.013
Google Scholar
J.E. Ramirez-Vick, Nanostructured ZnO for electrochemical biosensors. J. Biosens. Bioelectron. (2012). doi:10.4172/2155-6210.1000e109
Google Scholar
H. Karami, E. Fakoori, Synthesis and characterization of ZnO nanorods based on a new gel pyrolysis method. J. Nanomater. 2011, 628203 (2011). doi:10.1155/2011/628203
Google Scholar
Z. Xu, J.-Y. Hwang, B. Li, X. Huang, H. Wang, The characterization of various ZnO nanostructures using field-emission SEM. JOM 60(4), 29–32 (2008). doi:10.1007/s11837-008-0044-9
Google Scholar
R. Wahab, S. Ansari, Y. Kim, H. Seo, G. Kim, G. Khang, H.-S. Shin, Low temperature solution synthesis and characterization of ZnO nano-flowers. Mater. Res. Bull. 42(9), 1640–1648 (2007). doi:10.1016/j.materresbull.2006.11.035
Google Scholar
J. Zhang, L. Sun, J. Yin, H. Su, C. Liao, C. Yan, Control of ZnO morphology via a simple solution route. Chem. Mater. 14(10), 4172–4177 (2002). doi:10.1021/cm020077h
Google Scholar
R. Wahab, A. Mishra, S.-I. Yun, Y.-S. Kim, H.-S. Shin, Antibacterial activity of ZnO nanoparticles prepared via non-hydrolytic solution route. Appl. Microbiol. Biotechnol. 87(5), 1917–1925 (2010). doi:10.1007/s00253-010-2692-2
Google Scholar
R. Wahab, M.A. Siddiqui, Q. Saquib, S. Dwivedi, J. Ahmad, J. Musarrat, A.A. Al-Khedhairy, H.-S. Shin, ZnO nanoparticles induced oxidative stress and apoptosis in HepG2 and MCF-7 cancer cells and their antibacterial activity. Colloids Surf. B 117, 267–276 (2014). doi:10.1016/j.colsurfb.2014.02.038
Google Scholar
A. Stanković, S. Dimitrijević, D. Uskoković, Influence of size scale and morphology on antibacterial properties of ZnO powders hydrothermally synthesized using different surface stabilizing agents. Colloids Surf. B 102, 21–28 (2013). doi:10.1016/j.colsurfb.2012.07.033
Google Scholar
J.M. Wu, Heterojunction nanowires of AgxZn1−xO–ZnO photocatalytic and antibacterial activities under visible-light and dark conditions. J. Phys. Chem. C 119(3), 1433–1441 (2015). doi:10.1021/jp510259j
Google Scholar
J.I. Tariq Jan, M. Ismail, M. Zakaullah, S.H. Naqvi, N. Badshah, Sn doping induced enhancement in the activity of ZnO nanostructures against antibiotic resistant S. aureus bacteria. Int. J. Nanomed. 8(1), 3679–3687 (2013). doi:10.2147/IJN.S45439
Google Scholar
V.B. Schwartz, F. Thétiot, S. Ritz, S. Pütz, L. Choritz, A. Lappas, R. Förch, K. Landfester, U. Jonas, Antibacterial surface coatings from zinc oxide nanoparticles embedded in poly(n-isopropylacrylamide) hydrogel surface layers. Adv. Funct. Mater. 22(11), 2376–2386 (2012). doi:10.1002/adfm.201102980
Google Scholar
L. Zhang, Y. Jiang, Y. Ding, M. Povey, D. York, Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). J. Nanopart. Res. 9(3), 479–489 (2007). doi:10.1007/s11051-006-9150-1
Google Scholar
U. Ozgur, Y.I. Alivov, C. Liu, A. Teke, M. Reshchikov, S. Dogan, V. Avrutin, S.J. Cho, H. Morkoc, A
comprehensive review of ZnO materials and devices. J. Appl. Phys. 98(4), 041301 (2005). doi:10.1063/1.1992666
Google Scholar
A. Moezzi, A.M. McDonagh, M.B. Cortie, Zinc oxide particles: synthesis, properties and applications. Chem. Eng. J. 185, 1–22 (2012). doi:10.1016/j.cej.2012.01.076
Google Scholar
S. George, S. Pokhrel, T. Xia, B. Gilbert, Z. Ji, M. Schowalter, A. Rosenauer, R. Damoiseaux, K.A. Bradley, L. Mädler, Use of a rapid cytotoxicity screening approach to engineer a safer zinc oxide nanoparticle through iron doping. ACS Nano 4(1), 15–29 (2009). doi:10.1021/nn901503q
Google Scholar
G. Fu, P.S. Vary, C.-T. Lin, Anatase TiO2 nanocomposites for antimicrobial coatings. J. Phys. Chem. B 109(18), 8889–8898 (2005). doi:10.1021/jp0502196
Google Scholar
J.V.A. Edwards, K.J. Edwards, Bacteria Cell, http://www.alken-murray.com/BioInfo1-05.html. Accessed 9 July 2010
R. Wahab, Y.-S. Kim, A. Mishra, S.-I. Yun, H.-S. Shin, Formation of ZnO micro-flowers prepared via solution process and their antibacterial activity. Nanoscale Res. Lett. 5(10), 1675–1681 (2010). doi:10.1007/s11671-010-9694-y
Google Scholar
M. Premanathan, K. Karthikeyan, K. Jeyasubramanian, G. Manivannan, Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation. Nanomed. Nanotechnol. Biol. Med. 7(2), 184–192 (2011). doi:10.1016/j.nano.2010.10.001
Google Scholar
J. Sawai, Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay. J. Microbiol. Methods 54(2), 177–182 (2003). doi:10.1016/S0167-7012(03)00037-X
Google Scholar
S.O. Sukon Phanichphantand, Antimicrobial nanomaterials in
the textile industry, in Bionanotechnology II Global Prospects, ed. by D.E. Reisner (CRC Press, Boca Raton, 2011), p. 2
K.M. Reddy, K. Feris, J. Bell, D.G. Wingett, C. Hanley, A. Punnoose, Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Appl. Phys. Lett. 90(21), 213902 (2007). doi:10.1063/1.2742324
Google Scholar
O. Yamamoto, Influence of particle size on the antibacterial activity of zinc oxide. Int. J. Inorg. Mater. 3(7), 643–646 (2001). doi:10.1016/S1466-6049(01)00197-0
Google Scholar
S. Nair, A. Sasidharan, V.D. Rani, D. Menon, S. Nair, K. Manzoor, S. Raina, Role of size scale of ZnO nanoparticles and microparticles on toxicity toward bacteria and osteoblast cancer cells. J. Mater. Sci. Mater. Med. 20(1), 235–241 (2009). doi:10.1007/s10856-008-3548-5
Google Scholar
A.L. Barry, W.A. Craig, H. Nadler, L.B. Reller, C.C. Sanders, J.M. Swenson, in Methods for Determining Bactericidal Activity of Antimicrobial Agents; Approved Guideline, vol. 19, 18th edn. (National Committee for Clinical Laboratory Standards, CLSI, Wayne, 1999)
M. Aslam, I. Anis, N. Afza, M.T. Hussain, L. Iqbal, A. Hussain, S. Iqbal, T.H. Bokhari, M. Khalid, Synthesis, antibacterial, lipoxygenase and urease inhibitory activities of 2-aminophenol derivatives. Med. Chem. Drug Discov. 3(2), 80–86 (2012)
Google Scholar
R. Prasad, D. Basavaraju, K. Rao, C. Naveen, J. Endrino, A. Phani, Nanostructured
TiO2 and TiO2–Ag antimicrobial thin films, in Proceedings of the 2011 International Conference on
Nanoscience, Technology and Societal Implications (NSTSI), Bhubaneswar, USA, 8–10 December 2011 (IEEE, 2011), pp. 1–6. doi:10.1109/NSTSI.2011.6111808
L.K. Adams, D.Y. Lyon, P.J. Alvarez, Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Res. 40(19), 3527–3532 (2006). doi:10.1016/j.watres.2006.08.004
Google Scholar
K. Kasemets, A. Ivask, H.-C. Dubourguier, A. Kahru, Toxicity of nanoparticles of ZnO, CuO and TiO2 to yeast Saccharomyces cerevisiae. Toxicol. In Vitro 23(6), 1116–1122 (2009). doi:10.1016/j.tiv.2009.05.015
Google Scholar
T.J. Brunner, P. Wick, P. Manser, P. Spohn, R.N. Grass, L.K. Limbach, A. Bruinink, W.J. Stark, In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility. Environ. Sci. Technol. 40(14), 4374–4381 (2006). doi:10.1021/es052069i
Google Scholar
M. Li, L. Zhu, D. Lin, Toxicity of ZnO nanoparticles to Escherichia coli: mechanism and the influence of medium components. Environ. Sci. Technol. 45(5), 1977–1983 (2011). doi:10.1021/es102624t
Google Scholar
J. Sawai, S. Shoji, H. Igarashi, A. Hashimoto, T. Kokugan, M. Shimizu, H. Kojima, Hydrogen peroxide as an antibacterial factor in zinc oxide powder slurry. J. Ferment. Bioeng. 86(5), 521–522 (1998). doi:10.1016/S0922-338X(98)80165-7
Google Scholar
A. Lipovsky, Y. Nitzan, A. Gedanken, R. Lubart, Antifungal activity of ZnO nanoparticles—the role of ROS mediated cell injury. Nanotechnology 22(10), 105101 (2011). doi:10.1088/0957-4484/22/10/105101
Google Scholar
L. Zhang, Y. Ding, M. Povey, D. York, ZnO nanofluids—a potential antibacterial agent. Prog. Nat. Sci. 18(8), 939–944 (2008). doi:10.1016/j.pnsc.2008.01.026
Google Scholar
J. Zhang, Silver-coated zinc oxide nanoantibacterial
synthesis and antibacterial activity characterization, in 2011 International Conference on Electronics and Optoelectronics (ICEOE), vol. 3, Dalian, Liaoning, USA, 29–31 July 2011 (IEEE, 2011), pp. V3-94–V3-98. doi:10.1109/ICEOE.2011.6013309
M. Nirmala, M.G. Nair, K. Rekha, A. Anukaliani, S. Samdarshi, R.G. Nair, Photocatalytic activity of ZnO nanopowders synthesized by DC thermal plasma. Afr. J. Basic Appl. Sci. 2(5–6), 161–166 (2010)
Google Scholar
M. E, Proceedings of the photoconductivity conference, photoconductivity conference, Atlantic City, Pennsylvania (4-6 Nov. 1956): John Wiley and Sons, Inc, New York (1956)
I.S.J. Bao, Z. Su, R. Gurwitz, F. Capasso, X. Wang, Z. Ren, Photoinduced oxygen release and persistent photoconductivity in ZnO nanowires. Nanoscale Res. Lett. 6(404), 1–7 (2011). doi:10.1186/1556-276X-6-404
Google Scholar
S. Baruah, M.A. Mahmood, M.T.Z. Myint, T. Bora, J. Dutta, Enhanced visible light photocatalysis through fast crystallization of zinc oxide nanorods. Beilstein J. Nanotechnol. 1(1), 14–20 (2010). doi:10.3762/bjnano.1.3
Google Scholar
H. Zhang, B. Chen, H. Jiang, C. Wang, H. Wang, X. Wang, A strategy for ZnO nanorod mediated multi-mode cancer treatment. Biomaterials 32(7), 1906–1914 (2011). doi:10.1016/j.biomaterials.2010.11.027
Google Scholar
O. Seven, B. Dindar, S. Aydemir, D. Metin, M. Ozinel, S. Icli, Solar photocatalytic disinfection of a group of bacteria and fungi aqueous suspensions with TiO2, ZnO and Sahara Desert dust. J. Photochem. Photobiol. A 165(1), 103–107 (2004). doi:10.1016/j.jphotochem.2004.03.005
Google Scholar
S. Ahmed, M. Rasul, W.N. Martens, R. Brown, M. Hashib, Heterogeneous photocatalytic degradation of phenols in wastewater: a review on current status and developments. Desalination 261(1), 3–18 (2010). doi:10.1016/j.desal.2010.04.062
Google Scholar
P.J.P. Espitia, N.d.F.F. Soares, J.S. dos Reis Coimbra, N.J. de Andrade, R.S. Cruz, E.A.A. Medeiros, Zinc oxide nanoparticles: synthesis, antimicrobial activity and food packaging applications. Food Bioprocess Technol. 5(5), 1447–1464 (2012). doi:10.1007/s11947-012-0797-6
Google Scholar
G. Zhou, Y. Li, W. Xiao, L. Zhang, Y. Zuo, J. Xue, J.A. Jansen, Synthesis, characterization, and antibacterial activities of a novel nanohydroxyapatite/zinc oxide complex. J. Biomed. Mater. Res. A 85(4), 929–937 (2008). doi:10.1002/jbm.a.31527
Google Scholar
P. Joshi, S. Chakraborti, P. Chakrabarti, D. Haranath, V. Shanker, Z. Ansari, S.P. Singh, V. Gupta, Role of surface adsorbed anionic species in antibacterial activity of ZnO quantum dots against Escherichia coli. J. Nanosci. Nanotechnol. 9(11), 6427–6433 (2009). doi:10.1166/jnn.2009.1584
Google Scholar
K. Hirota, M. Sugimoto, M. Kato, K. Tsukagoshi, T. Tanigawa, H. Sugimoto, Preparation of zinc oxide ceramics with a sustainable antibacterial activity under dark conditions. Ceram. Int. 36(2), 497–506 (2010). doi:10.1016/j.ceramint.2009.09.026
Google Scholar
L.C. Ann, S. Mahmud, S.K.M. Bakhori, A. Sirelkhatim, D. Mohamad, H. Hasan, A. Seeni, R.A. Rahman, Effect of surface modification and UVA photoactivation on antibacterial bioactivity of zinc oxide powder. Appl. Surf. Sci. 292, 405–412 (2014). doi:10.1016/j.apsusc.2013.11.152
Google Scholar
I.G. Kirkinezos, C.T. Moraes, Reactive oxygen species and mitochondrial diseases. Semin. Cell Dev. Biol. 12(6), 449–457 (2001). doi:10.1006/scdb.2001.0282
Google Scholar
N. Talebian, S.M. Amininezhad, M. Doudi, Controllable synthesis of ZnO nanoparticles and their morphology-dependent antibacterial and optical properties. J. Photochem. Photobiol. 120, 66–73 (2013). doi:10.1016/j.jphotobiol.2013.01.004
Google Scholar
J. Ma, J. Liu, Y. Bao, Z. Zhu, X. Wang, J. Zhang, Synthesis of large-scale uniform mulberry-like ZnO particles with microwave hydrothermal method and its antibacterial property. Ceram. Int. 39(3), 2803–2810 (2013). doi:10.1016/j.ceramint.2012.09.049
Google Scholar
M. Ramani, S. Ponnusamy, C. Muthamizhchelvan, E. Marsili, Amino acid-mediated synthesis of zinc oxide nanostructures and evaluation of their facet-dependent antimicrobial activity. Colloids Surf. B 117, 233–239 (2014). doi:10.1016/j.colsurfb.2014.02.017
Google Scholar
H. Yang, C. Liu, D. Yang, H. Zhang, Z. Xi, Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape and composition. J. Appl. Toxicol. 29(1), 69–78 (2009). doi:10.1002/jat.1385
Google Scholar
G. Li, T. Hu, G. Pan, T. Yan, X. Gao, H. Zhu, Morphology–function relationship of ZnO: polar planes, oxygen vacancies, and activity. J. Phys. Chem. C 112(31), 11859–11864 (2008). doi:10.1021/jp8038626
Google Scholar
G.-X. Tong, F.-F. Du, Y. Liang, Q. Hu, R.-N. Wu, J.-G. Guan, X. Hu, Polymorphous ZnO complex architectures: selective synthesis, mechanism, surface area and Zn-polar plane-codetermining antibacterial activity. J. Mater. Chem. B 1(4), 454–463 (2013). doi:10.1039/C2TB00132B
Google Scholar
L.C. Ann, S. Mahmud, S.K.M. Bakhori, A. Sirelkhatim, D. Mohamad, H. Hasan, A. Seeni, R.A. Rahman, Antibacterial responses of zinc oxide structures against Staphylococcus aureus, Pseudomonas aeruginosa and Streptococcus pyogenes. Ceram. Int. 40(2), 2993–3001 (2014). doi:10.1016/j.ceramint.2013.10.008
Google Scholar
M.H. Mamat, Z. Khusaimi, M.M. Zahidi, M.R. Mahmood, Performance
of an ultraviolet photoconductive sensor using well-aligned aluminium-doped zinc-oxide nanorod arrays annealed in an air and oxygen environment. Jpn. J. Appl. Phys. 50(6), 06GF05–06GF05-4 (2011). doi:10.1143/JJAP.50.06GF05
Google Scholar
Y. Leung, C. Chan, A. Ng, H. Chan, M. Chiang, A. Djurišić, Y. Ng, W. Jim, M. Guo, F. Leung, Antibacterial activity of ZnO nanoparticles with a modified surface under ambient illumination. Nanotechnology 23(47), 475703 (2012). doi:10.1088/0957-4484/23/47/475703
Google Scholar
A. Hsu, F. Liu, Y.H. Leung, A.P. Ma, A.B. Djurišić, F.C. Leung, W.K. Chan, H.K. Lee, Is the effect of surface modifying molecules on antibacterial activity universal for a given material? Nanoscale 6(17), 10323–10331 (2014). doi:10.1039/C4NR02366H
Google Scholar
X. Peng, S. Palma, N.S. Fisher, S.S. Wong, Effect of morphology of ZnO nanostructures on their toxicity to marine algae. Aquat. Toxicol. 102(3), 186–196 (2011). doi:10.1016/j.aquatox.2011.01.014
Google Scholar
J. Sawai, E. Kawada, F. Kanou, H. Igarashi, A. Hashimoto, T. Kokugan, M. Shimizu, Detection of active oxygen generated from ceramic powders having antibacterial activity. J. Chem. Eng. Jpn. 29(4), 627–633 (1996). doi:10.1252/jcej.29.627
Google Scholar
N.M. Franklin, N.J. Rogers, S.C. Apte, G.E. Batley, G.E. Gadd, P.S. Casey, Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environ. Sci. Technol. 41(24), 8484–8490 (2007). doi:10.1021/es071445r
Google Scholar
H.A. Jeng, J. Swanson, Toxicity of metal oxide nanoparticles in mammalian cells. J. Environ. Sci. Health. A 41(12), 2699–2711 (2006). doi:10.1080/10934520600966177
Google Scholar
Y. Xie, Y. He, P.L. Irwin, T. Jin, X. Shi, Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl. Environ. Microbiol. 77(7), 2325–2331 (2011). doi:10.1128/AEM.02149-10
Google Scholar
L. Palanikumar, S.N. Ramasamy, C. Balachandran, Size-dependent antimicrobial response of zinc oxide nanoparticles. IET Nanobiotechnol. 8(2), 111–117 (2014)
Google Scholar
S. Atmaca, K. Gül, R. Cicek, The effect of zinc on microbial growth. Turk. J. Med. Sci. 28(6), 595–598 (1998)
Google Scholar
H. Hu, W. Zhang, Y. Qiao, X. Jiang, X. Liu, C. Ding, Antibacterial activity and increased bone marrow stem cell functions of Zn-incorporated TiO2 coatings on titanium. Acta Biomater. 8(2), 904–915 (2012). doi:10.1016/j.actbio.2011.09.031
Google Scholar
W. Salem, D.R. Leitner, F.G. Zingl, G. Schratter, R. Prassl, W. Goessler, J. Reidl, S. Schild, Antibacterial activity of silver and zinc nanoparticles against Vibrio cholerae and enterotoxic Escherichia coli. Int. J. Med. Microbiol. 305(1), 85–95 (2015). doi:10.1016/j.ijmm.2014.11.005
Google Scholar
F. Kroger, The Chemistry of Imperfect Crystals. Vol. 2. Imperfection Chemistry of Crystalline Solids (Elsevier, New York, 1974)
X. Wang, F. Yang, W. Yang, X. Yang, A study on the antibacterial activity of one-dimensional ZnO nanowire arrays: effects of the orientation and plane surface. Chem. Commun. 42, 4419–4421 (2007). doi:10.1039/b708662h
Google Scholar
K. Tam, A. Djurišić, C. Chan, Y. Xi, C. Tse, Y. Leung, W. Chan, F. Leung, D. Au, Antibacterial activity of ZnO nanorods prepared by a hydrothermal method. Thin Solid Films 516(18), 6167–6174 (2008). doi:10.1016/j.tsf.2007.11.081
Google Scholar
R. Karmali, A. Bartakke, V. Borker, K. Rane, Bactericidal action of N doped ZnO in sunlight. Biointerface Res. Appl. Chem. 1(2), 57–63 (2011)
Google Scholar
P.K. Stoimenov, R.L. Klinger, G.L. Marchin, K.J. Klabunde, Metal oxide nanoparticles as bactericidal agents. Langmuir 18(17), 6679–6686 (2002). doi:10.1021/la0202374
Google Scholar
J.S. Kim, E. Kuk, K.N. Yu, J.-H. Kim, S.J. Park, H.J. Lee, S.H. Kim, Y.K. Park, Y.H. Park, C.-Y. Hwang, Antimicrobial effects of silver nanoparticles. Nanomed. Nanotechnol. Biol. Med. 3(1), 95–101 (2007). doi:10.1016/j.nano.2006.12.001
Google Scholar
L. Liu, J. Yang, J. Xie, Z. Luo, J. Jiang, Y.Y. Yang, S. Liu, The potent antimicrobial properties of cell penetrating peptide-conjugated silver nanoparticles with excellent selectivity for Gram-positive bacteria over erythrocytes. Nanoscale 5(9), 3834–3840 (2013). doi:10.1039/c3nr34254a
Google Scholar
J.Y. Kim, J.Y. Yoon, Developing a testing method for antimicrobial efficacy on TiO2 photocatalytic products. Environ. Eng. Res. 13(3), 136–140 (2008). doi:10.4491/eer.2008.13.3.136
Google Scholar
I.-L. Hsiao, Y.-J. Huang, Effects of various physicochemical characteristics on the toxicities of ZnO and TiO2 nanoparticles toward human lung epithelial cells. Sci. Total Environ. 409(7), 1219–1228 (2011). doi:10.1016/j.scitotenv.2010.12.033
Google Scholar
H. Zhang, X. Lv, Y. Li, Y. Wang, J. Li, P25–graphene composite as a high performance photocatalyst. ACS Nano 4(1), 380–386 (2009). doi:10.1021/nn901221k
Google Scholar
Z. Huang, X. Zheng, D. Yan, G. Yin, X. Liao, Y. Kang, Y. Yao, D. Huang, B. Hao, Toxicological effect of ZnO nanoparticles based on bacteria. Langmuir 24(8), 4140–4144 (2008). doi:10.1021/la7035949
Google Scholar
T. Xia, M. Kovochich, M. Liong, L. Mädler, B. Gilbert, H. Shi, J.I. Yeh, J.I. Zink, A.E. Nel, Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2(10), 2121–2134 (2008). doi:10.1021/nn800511k
Google Scholar
R. Prasad, D. Basavaraju, K. Rao, C. Naveen, J. Endrino, A. Phani, Nanostructured
TiO2 and TiO2–Ag antimicrobial thin films, in 2011 International Conference on Nanoscience, Technology and Societal Implications (NSTSI), Bhubaneswar, USA, 8–10 December 2011 (IEEE, 2011), pp. 1–6. doi:10.1109/NSTSI.2011.6111808
S. Dwivedi, R. Wahab, F. Khan, Y.K. Mishra, J. Musarrat, A.A. Al-Khedhairy, Reactive oxygen species mediated bacterial biofilm inhibition via zinc oxide nanoparticles and their statistical determination. PLoS ONE 9(11), e111289 (2014). doi:10.1371/journal.pone.0111289
Google Scholar
W. Song, J. Zhang, J. Guo, J. Zhang, F. Ding, L. Li, Z. Sun, Role of the dissolved zinc ion and reactive oxygen species in cytotoxicity of ZnO nanoparticles. Toxicol. Lett. 199(3), 389–397 (2010). doi:10.1016/j.toxlet.2010.10.003
Google Scholar
B. Kalyanaraman, V. Darley-Usmar, K.J. Davies, P.A. Dennery, H.J. Forman, M.B. Grisham, G.E. Mann, K. Moore, L.J. Roberts, H. Ischiropoulos, Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations. Free Radic. Biol. Med. 52(1), 1–6 (2012). doi:10.1016/j.freeradbiomed.2011.09.030
Google Scholar
D. Guo, H. Bi, B. Liu, Q. Wu, D. Wag, Y. Cui, Reactive oxygen species-induced cytotoxic effects of zinc oxide nanoparticles in rat retinal ganglion cells. Toxicol. In Vitro 27(2), 731–738 (2012). doi:10.1016/j.tiv.2012.12.001
Google Scholar
R. Wahab, N.K. Kaushik, N. Kaushik, E.H. Choi, A. Umar, S. Dwivedi, J. Musarrat, A.A. Al-Khedhairy, ZnO nanoparticles induces cell death in malignant human T98G gliomas, KB and non-malignant HEK cells. J. Biomed. Nanotechnol. 9(7), 1181–1189 (2013)
Google Scholar
Y. Matsumura, K. Yoshikata, S.-I. Kunisaki, T. Tsuchido, Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate. Appl. Environ. Microbiol. 69(7), 4278–4281 (2003). doi:10.1128/AEM.69.7.4278-4281.2003
Google Scholar
K.R. Messner, J.A. Imlay, The identification of primary sites of superoxide and hydrogen peroxide formation in the aerobic respiratory chain and sulfite reductase complex of Escherichia coli. J. Biol. Chem. 274(15), 10119–10128 (1999). doi:10.1074/jbc.274.15.10119
Google Scholar
L. Yuan, Y. Wang, J. Wang, H. Xiao, X. Liu, Additive effect of zinc oxide nanoparticles and isoorientin on apoptosis in human hepatoma cell line. Toxicol. Lett. 225(2), 294–304 (2014). doi:10.1016/j.toxlet.2013.12.015
Google Scholar
M. Heinlaan, A. Ivask, I. Blinova, H.-C. Dubourguier, A. Kahru, Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere 71(7), 1308–1316 (2008). doi:10.1016/j.chemosphere.2007.11.047
Google Scholar
B. Aydin Sevinç, L. Hanley, Antibacterial activity of dental composites containing zinc oxide nanoparticles. J. Biomed. Mater. Res. B 94(1), 22–31 (2010). doi:10.1002/jbm.b.31620
Google Scholar
S.W. Wong, P.T. Leung, A. Djurišić, K.M. Leung, Toxicities of nano zinc oxide to five marine organisms: influences of aggregate size and ion solubility. Anal. Bioanal. Chem. 396(2), 609–618 (2010). doi:10.1007/s00216-009-3249-z
Google Scholar
B. Wu, Y. Wang, Y.-H. Lee, A. Horst, Z. Wang, D.-R. Chen, R. Sureshkumar, Y.J. Tang, Comparative eco-toxicities of nano-ZnO particles under aquatic and aerosol exposure modes. Environ. Sci. Technol. 44(4), 1484–1489 (2010). doi:10.1021/es9030497
Google Scholar
W. Jiang, H. Mashayekhi, B. Xing, Bacterial toxicity comparison between nano- and micro-scaled oxide particles. Environ. Pollut. 157(5), 1619–1625 (2009). doi:10.1016/j.envpol.2008.12.025
Google Scholar
J. Pasquet, Y. Chevalier, J. Pelletier, E. Couval, D. Bouvier, M.-A. Bolzinger, The contribution of zinc ions to the antimicrobial activity of zinc oxide. Colloids Surf. A 457, 263–274 (2014). doi:10.1016/j.colsurfa.2014.05.057
Google Scholar
X. Wang, H.-F. Wu, Q. Kuang, R.-B. Huang, Z.-X. Xie, L.-S. Zheng, Shape-dependent antibacterial activities of Ag2O polyhedral particles. Langmuir 26(4), 2774–2778 (2009). doi:10.1021/la9028172
Google Scholar
O. Yamamoto, M. Komatsu, J. Sawai, Z.-E. Nakagawa, Effect of lattice constant of zinc oxide on antibacterial characteristics. J. Mater. Sci. Mater. Med. 15(8), 847–851 (2004). doi:10.1023/B:JMSM.0000036271.35440.36
Google Scholar
L.V. Ana Stanković, S. Marković, S. Dimitrijević, S.D. Škapin, D. Uskoković, Morphology Controlled hydrothermal synthesis of ZnO particles and examination of their antibacterial properties on Escherichia coli and Staphylococcus aureus bacterial cultures, in Tenth Young Researchers’ Conference—Materials Science and Engineering, Belgrade, Serbia, 21–23 December 2011 (Institute of Technical Sciences of SASA, Belgrade, 2011), p. 62
V. Berry, A. Gole, S. Kundu, C.J. Murphy, R.F. Saraf, Deposition of CTAB-terminated nanorods on bacteria to form highly conducting hybrid systems. J. Am. Chem. Soc. 127(50), 17600–17601 (2005). doi:10.1021/ja056428l
Google Scholar
A. Lipovsky, Z. Tzitrinovich, H. Friedmann, G. Applerot, A. Gedanken, R. Lubart, EPR study of visible light-induced ROS generation by nanoparticles of ZnO. J. Phys. Chem. C 113(36), 15997–16001 (2009). doi:10.1021/jp904864g
Google Scholar
J. Díaz-Visurraga, C. Gutiérrez, C. Von Plessing, A. García, in Science and Technology Against Microbial Pathogens Communicating Current Research and Technological Advances: Metal Nanostructures as Antibacterial Agents, ed. by A. Méndez-Vilas (Formatex, Badajoz, 2011), pp. 210–218
Google Scholar
M. Ramani, S. Ponnusamy, C. Muthamizhchelvan, From zinc oxide nanoparticles to microflowers: a study of growth kinetics and biocidal activity. Mater. Sci. Eng. C 32(8), 2381–2389 (2012). doi:10.1016/j.msec.2012.07.011
Google Scholar
C.-N. Lok, C.-M. Ho, R. Chen, Q.-Y. He, W.-Y. Yu, H. Sun, P.K.-H. Tam, J.-F. Chiu, C.-M. Che, Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J. Proteome Res. 5(4), 916–924 (2006). doi:10.1021/pr0504079
Google Scholar
H. Meruvu, M. Vangalapati, S.C. Chippada, S.R. Bammidi, Synthesis and characterization of zinc oxide nanoparticles and its antimicrobial activity against Bacillus subtilis and Escherichia coli. J. Rasayan Chem. 4(1), 217–222 (2011)
Google Scholar
N.A. Amro, L.P. Kotra, K. Wadu-Mesthrige, A. Bulychev, S. Mobashery, G.-Y. Liu, High-resolution atomic force microscopy studies of the Escherichia coli outer membrane: structural basis for permeability. Langmuir 16(6), 2789–2796 (2000). doi:10.1021/la991013x
Google Scholar
M.L.M. Francisco Javier Gutiérrez, P. Gatón, R. Rojo, in Scientific, Health and Social Aspects of the Food Industry: Nanotechnology and Food Industry, ed. by B. Valdez (InTech Europe, Rijeka, 2012), pp. 95–128. doi:10.5772/1869
Q. Chaudhry, L. Castle, Food applications of nanotechnologies: an overview of opportunities and challenges for developing countries. Trends Food Sci. Technol. 22(11), 595–603 (2011). doi:10.1016/j.tifs.2011.01.001
Google Scholar
C. Silvestre, D. Duraccio, S. Cimmino, Food packaging based on polymer nanomaterials. Prog. Polym. Sci. 36(12), 1766–1782 (2011). doi:10.1016/j.progpolymsci.2011.02.003
Google Scholar
T.V. Duncan, Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. J. Colloid Interface Sci. 363(1), 1–24 (2011). doi:10.1016/j.jcis.2011.07.017
Google Scholar
P. Kaur, R. Thakur, S. Kumar, N. Dilbaghi, Interaction of ZnO nanoparticles with food borne pathogens Escherichia coli DH5α and Staphylococcus aureus 5021 and their bactericidal efficacy, in International Conference on Advances in Condensed and Nano Materials (ICACNM-2011): AIP Proceedings, Chandigarh, India, 23–26 February 2011 (2011), p. 153. doi:10.1063/1.3653655
P. Narayanan, W.S. Wilson, A.T. Abraham, M. Sevanan, Synthesis, characterization, and antimicrobial activity of zinc oxide nanoparticles against human pathogens. BioNanoScience 2(4), 329–335 (2012). doi:10.1007/s12668-012-0061-6
Google Scholar
K. Chitra, G. Annadurai, Antimicrobial activity of wet chemically engineered spherical shaped ZnO nanoparticles on food borne pathogen. Int. Food Res. J. 20(1), 59–64 (2013)
Google Scholar
B. Yalcin, S. Otles, Intelligent food packaging, http://www.logforum.net/vol4/issue4/no3. Accessed 13 Feb 2008
H. de Azeredo, Antimicrobial nanostructures in food packaging. Trends Food Sci. Technol. 30(1), 56–69 (2013). doi:10.1016/j.tifs.2012.11.006
Google Scholar
N. Soares, C.A.S. Silva, P. Santiago-Silva, P.J.P Espitia, M.P.J.C. Gonçalves, M.J.G. Lopez, J. Miltz, M.A. Cerqueira, A.A. Vicente, J. Teixeira, in Engineering Aspects of Milk and Dairy Products: Active and Intelligent Packaging for Milk and Milk Products, ed. by J.A.T. Jane Selia dos Reis Coimbra (CRC Press, 2009), pp. 155–174. doi:10.1201/9781420090390-c8
R. Ahvenainen (ed.), Novel Food Packaging Techniques (CRC Press, Boca Raton, 2003)
Google Scholar
N.D. Kruijf, M.V. Beest, R. Rijk, T. Sipiläinen-Malm, P.P. Losada, B.D. Meulenaer, Active and intelligent packaging: applications and regulatory aspects. Food Addit. Contam. 19(S1), 144–162 (2002). doi:10.1080/02652030110072722
Google Scholar
K.L. Yam, P.T. Takhistov, J. Miltz, Intelligent packaging: concepts and applications. J. Food Sci. 70(1), R1–R10 (2005). doi:10.1111/j.1365-2621.2005.tb09052.x
Google Scholar
S.S. Kumar, P. Venkateswarlu, V.R. Rao, G.N. Rao, Synthesis, characterization and optical properties of zinc oxide nanoparticles. Int. Nano. Lett. 3(1), 1–6 (2013)
E.E. Hafez, H.S. Hassan, M. Elkady, E. Salama, Assessment Of antibacterial activity for synthesized zinc oxide nanorods against plant pathogenic strains. Int. J. Sci. Tech. Res. (IJSTR), 3(9), 318–324 (2014)