Skip to main content
Log in

An Improvement Meshless Method for the Numerical Solution of Two-Dimensional Stochastic Fredholm Integral Equations

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, a new adaptive meshless scheme based on the regularized moving least squares approximation combined with It\(\hat{o}\) approximation is employed to solve two-dimensional stochastic integral equations. This approach is proposed for handling a singular moment matrix in the context of meshfree methods based on moving least squares approximation. A valuable advantage of applying this technique is that the results converge more quickly to the exact solution by using a small support domain, and it is more flexible because it allows an easy adaptation of the nodal density. The computational complexity is presented to measure the usage time of the proposed approach. The convergence rate of the new method is provided. The numerical test problems are presented and compared with the results obtained by other meshless methods to verify the efficiency and accuracy of the proposed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and material

Not applicable.

References

  1. Khodabin, M., Maleknejad, K., Rostami, M., Nouri, M.: Interpolation solution in generalized stochastic exponential population growth model. Appl. Math. Model. 36(3), 1023–1033 (2012)

    Article  MathSciNet  Google Scholar 

  2. Levin J., Nohel, J.: On a system of integro-differential equations occurring in reactor dynamics. J. Math. Mech. 347–368 (1960)

  3. Heydari, M.H., Hooshmandasl, M.R., Cattani, C., Ghaini, F.M.: An efficient computational method for solving nonlinear stochastic itô integral equations: application for stochastic problems in physics. J. Comput. Phys. 283, 148–168 (2015)

    Article  MathSciNet  Google Scholar 

  4. Maleknejad, K., Khodabin, M., Rostami, M.: Numerical solution of stochastic volterra integral equations by a stochastic operational matrix based on block pulse functions. Math. Comput. Model. 3–4, 791–800 (2012)

    Article  MathSciNet  Google Scholar 

  5. Saffarzadeh, M., Loghmani, G.B., Heydari, M.: An iterative technique for the numerical solution of nonlinear stochastic itô-volterra integral equations. J. Comput. Appl. Math. 333, 74–86 (2018)

    Article  MathSciNet  Google Scholar 

  6. Mirzaee, F., Samadyar, N., Hoseini, S.F.: Euler polynomial solutions of nonlinear stochastic itô-volterra integral equations. J. Comput. Appl. Math. 330, 574–585 (2018)

    Article  MathSciNet  Google Scholar 

  7. Khodabin, M., Maleknejad, K., Damercheli, T.: Approximate solution of the stochastic volterra integral equations via expansion method. Int. J. Indus. Math. 6(1), 41–48 (2014)

    Google Scholar 

  8. Mohammadi, F.: A wavelet-based computational method for solving stochastic itô-volterra integral equations. J. Comput. Phys. 298, 254–265 (2015)

    Article  MathSciNet  Google Scholar 

  9. Nikan, O., Avazzadeh, Z.: A locally stabilized radial basis function partition of unity technique for the sine-Gordon system in nonlinear optics. Math. Comput. Simul. 199, 394–413 (2022)

    Article  MathSciNet  Google Scholar 

  10. Nikan, O., Avazzadeh, Z., Tenreiro Machado, J.A.: Localized kernel-based meshless method for pricing financial options underlying fractal transmission system. Math. Methods Appl. Sci. (2021)

  11. Nikan, O., Avazzadeh, Z., Machado, J.T., Rasoulizadeh, M.N.: An accurate localized meshfree collocation technique for the telegraph equation in propagation of electrical signals. Eng. Comput. 39(3), 2327–2344 (2023)

    Article  Google Scholar 

  12. Avazzadeh, Z., Nikan, O., Nguyen, A.T.: A localized hybrid kernel meshless technique for solving the fractional Rayleigh–Stokes problem for an edge in a viscoelastic fluid". Eng. Anal. Boundary Elem. 146, 695–705 (2023)

    Article  MathSciNet  Google Scholar 

  13. Fallahpour, M., Khodabin, M., Maleknejad, K.: Approximation solution of two-dimensional linear stochastic volterra integral equation by applying the Haar wavelet (2015). arXiv:1505.04855

  14. Fallahpour, M., Khodabin, M., Maleknejad, K.: Theoretical error analysis and validation in numerical solution of two-dimensional linear stochastic Volterra–Fredholm integral equation by applying the block-pulse functions. Cogent Math. 4(1), 1296750 (2017)

    Article  MathSciNet  Google Scholar 

  15. Assari, P., Adibi, H., Dehghan, M.: A meshless method based on the moving least squares (MLS) approximation for the numerical solution of two-dimensional nonlinear integral equations of the second kind on non-rectangular domains. Numer. Algor. 67(2), 423–455 (2014)

    Article  MathSciNet  Google Scholar 

  16. El Majouti, Z., El Jid, R., Hajjaj, A.: Numerical solution of two-dimensional Fredholm–Hammerstein integral equations on 2D irregular domains by using modified moving least-square method. Int. J. Comput. Math. 98(8), 1574–1593 (2021)

    Article  MathSciNet  Google Scholar 

  17. El Majouti, Z., El Jid, R., Hajjaj, A.: Solving two-dimensional linear and nonlinear mixed integral equations using moving least squares and modified moving least squares methods. IAENG Int. J. Appl. Math. 51(1), (2021)

  18. El Majouti, Z., El Jid, R., Hajjaj, A.: Numerical solution for three-dimensional nonlinear mixed Volterra–Fredholm integral equations via modified moving least-square method. Int. J. Comput. Math. 99(9), 1849–1867 (2022)

    Article  MathSciNet  Google Scholar 

  19. El Majouti, Z., Taghizadeh, E., El Jid, R.: A meshless method for the numerical solution of fractional stochastic integro-differential equations based on the moving least square approach. Int. J. Appl. Comput. Math. 9(3), 27 (2023)

    Article  MathSciNet  Google Scholar 

  20. Laeli Dastjerdi, H., Nili Ahmadabadi, M.: Moving least squares collocation method for Volterra integral equations with proportional delay. Int. J. Comput. Math. 94(12), 2335–2347 (2017)

    Article  MathSciNet  Google Scholar 

  21. Assari, P., Dehghan, M.: A meshless local discrete Galerkin (MLDG) scheme for numerically solving two-dimensional nonlinear Volterra integral equations. Appl. Math. Comput. 350, 249–265 (2019)

    MathSciNet  Google Scholar 

  22. Assari, P., Dehghan, M.: A meshless local discrete collocation (MLDC) scheme for solving 2-dimensional singular integral equations with logarithmic kernels. Int. J. Numer. Model. Electron. Networks Devices Fields 31(3), e2311 (2018)

    Article  Google Scholar 

  23. Assari, P.: On the numerical solution of two-dimensional integral equations using a meshless local discrete Galerkin scheme with error analysis. Eng. Comput. 35(3), 893–916 (2019)

    Article  Google Scholar 

  24. Joldes, G.R., Chowdhury, H.A., Wittek, A., Doyle, B., Miller, K.: Modified moving least squares with polynomial bases for scattered data approximation. Appl. Math. Comput. 266, 893–902 (2015)

    MathSciNet  Google Scholar 

  25. Wang, Q., Zhou, W., Feng, Y., Ma, G., Cheng, Y., Chang, X.: An adaptive orthogonal improved interpolating moving least-square method and a new boundary element-free method. Appl. Math. Comput. 353, 347–370 (2019)

    MathSciNet  Google Scholar 

  26. Wang, Q., Zhou, W., Cheng, Y., Ma, G., Chang, X., Miao, Y., Chen, E.: Regularized moving leastsquare method and regularized improved interpolating moving least-square method with nonsingular moment matrices. Appl. Math. Comput. 325, 120–145 (2018)

    MathSciNet  Google Scholar 

  27. Lancaster, P., Salkauskas, K.: Surfaces generated by moving least squares methods. Math. Comput. 37(155), 141–158 (1981)

    Article  MathSciNet  Google Scholar 

  28. Mirzaei, D., Schaback, R., Dehghan, M.: On generalized moving least squares and diffuse derivatives. IMA J. Numer. Anal. 32(3), 983–1000 (2012)

    Article  MathSciNet  Google Scholar 

  29. Klebaner, F.: Introduction to stochastic calculus with applications (2005)

  30. Chung, K.L., Williams, R.J.: Introduction to Stochastic Integration, vol. 2. Springer, New York (1990)

    Book  Google Scholar 

  31. Fasshauer, G.: Meshfree methods. Handbook Theor. Comput. Nanotechnol. 27, 33–97 (2005)

    Google Scholar 

  32. Wendland, H.: Scattered Data Approximation, vol. 17. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  33. Babuš, K.A.I., Banerjee, U., Osborn, J.E., Zhang, Q.: Effect of numerical integration on meshless methods. Comput. Methods Appl. Mech. Eng. 198(37–40), 2886–2897 (2009)

    Article  MathSciNet  Google Scholar 

  34. Samadyar, N., Mirzaee, F.: Numerical solution of two-dimensional stochastic Fredholm integral equations on hypercube domains via meshfree approach. J. Comput. Appl. Math. 377, 112875 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank the referees for providing them suggestions and constructive comments which led to the improvement of this article.

Funding

There was no funding support for the work reported in the paper.

Author information

Authors and Affiliations

Authors

Contributions

All authors read and approved the final manuscript.

Corresponding author

Correspondence to Zahra El Majouti.

Ethics declarations

Conflicts of interest

The authors declare that they have no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Majouti, Z., El Jid, R. & Hajjaj, A. An Improvement Meshless Method for the Numerical Solution of Two-Dimensional Stochastic Fredholm Integral Equations. Int. J. Appl. Comput. Math 10, 98 (2024). https://doi.org/10.1007/s40819-024-01737-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-024-01737-1

Keywords

Navigation