Skip to main content
Log in

A Meshless Method for the Numerical Solution of Fractional Stochastic Integro-Differential Equations Based on the Moving Least Square Approach

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

Recently, more and more researchers focus on stochastic fractional equations due to their applicability to describe the memory and randomness of many noise systems problems. In the current work, we develop a meshless approach based on moving least square approximation (MLS) to solve stochastic fractional integro-differential equations (SFIDEs). To establish the scheme; we consider the composite Gauss-Legendre integration rule for computing the singular-fractional integral and the Riemann sum for estimating It\(\hat{o}\) integral. We have also compared different basis in terms of CPU time. The error bound of the method is provided. The major accuracy of this approach is that the approximate solutions converge more quickly to the exact solutions by choosing a small number of basis functions and nodes, then the computational cost of the moment matrix is reduced. Several numerical test problems are presented. Comparing the results obtained with other methods confirm the efficiency of the proposed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  1. Assari, P., Asadi-Mehregan, F.: Local radial basis function scheme for solving a class of fractional integro-differential equations based on the use of mixed integral equations. Z Angew. Math. Mech. 99(8), 201800236 (2019)

    MathSciNet  Google Scholar 

  2. Assari, P., Adibi, H., Dehghan, M.: A meshless method based on the moving least squares (MLS) approximation for the numerical solution of two-dimensional nonlinear integral equations of the second kind on non-rectangular domains. Numer. Algorithms 67, 423–455 (2014)

    MathSciNet  MATH  Google Scholar 

  3. Baillie, R.T.: Long memory processes and fractional integration in econometrics. J. Econom. 73(5), 5–59 (1996)

    MathSciNet  MATH  Google Scholar 

  4. Belytschko, T., Lu, T.Y.Y., Gu, L.: Element-free Galerkin methods. Intern. J. Numer. Methods Eng. 37(2), 229–256 (1994)

    MathSciNet  MATH  Google Scholar 

  5. Bohannan, G.W.: Analog fractional order controller in temperature and motor control applications. J. Vib. Control 14, 1487–1498 (2008)

    MathSciNet  Google Scholar 

  6. Buhmann, M.D.: Radial Basis Functions: Theory and Implementations. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  7. Cioica, P.A., Dahlke, S.: Spatial Besov regularity for semilinear stochastic partial differential equations on bounded Lipschitz domains. Int. J. Comput. Math. 89(18), 2443–2459 (2012)

    MathSciNet  MATH  Google Scholar 

  8. Dareiotis, K., Leahy, J.M.: Finite difference schemes for linear stochastic integro-differential equations. Stoch. Process. Appl. 126(10), 3202–3234 (2016)

    MathSciNet  MATH  Google Scholar 

  9. Dastjerdi, H.L., Maalek Ghaini, F.M.: Numerical solution of Volterra–Fredholm integral equations by moving least square method and Chebyshev polynomials. Appl. Math. Model. 36, 3283–3288 (2012)

    MathSciNet  MATH  Google Scholar 

  10. Davoud, M., Schaback, R., Dehghan, M.: On generalized moving least squares and diffuse derivatives. IMA J. Numer. Anal. 32(3), 983–1000 (2012)

    MathSciNet  MATH  Google Scholar 

  11. Dehghan, M., Rezvan Salehi, R.: The numerical solution of the non-linear integro-differential equations based on the meshless method. J. Comput. Appl. Math. 236(9), 2367–2377 (2012)

    MathSciNet  MATH  Google Scholar 

  12. Denisov, S.I., Hanggi, P., Kantz, H.: Parameters of the fractional Fokker–Planck equation. Europhys. Lett. 85(4), 40007 (2009)

    Google Scholar 

  13. El majouti, Z., El jid, R., Hajjaj, A.: Numerical solution of two-dimensional Fredholm–Hammerstein integral equations on 2D irregular domains by using modified moving least-square method. Int. J. Comput. Math. 98(8), 1574–1593 (2021)

    MathSciNet  MATH  Google Scholar 

  14. El majouti, Z., El jid, R., Hajjaj, A.: Solving two-dimensional linear and nonlinear mixed integral equations using moving least squares and modified moving least squares methods. IAENG Int. J. Appl. Math. 51(1), 57–65 (2021)

    MATH  Google Scholar 

  15. El majouti, Z., El jid, R., Hajjaj, A.: Numerical solution for three-dimensional nonlinear mixed Volterra–Fredholm integral equations via modified moving least square method. Int. J. Comput. Math. 99(9), 1849–1867 (2021)

    MathSciNet  MATH  Google Scholar 

  16. Fasshauer, G.E.: Meshfree Methods. In: Rieth, M., Schommers, W. (eds.) Handbook of Theoretical and Computational Nanotechnology. American Scientific Publishers, Valencia (2005)

    Google Scholar 

  17. He, J.H.: Some applications of nonlinear fractional differential equations and their approximations. Bull. Sci. Technol. 5(86), 86–90 (1999)

    Google Scholar 

  18. Heydari, M.H., Laeli Dastjerdi, H., Nili Ahmadabadi, M.: An efficient method for the numerical solution of a class of nonlinear fractional Fredholm Integro-Differential equations. Int. J. Nonlinear Sci. Numer. Simul. 19(2), 165–173 (2018)

    MathSciNet  MATH  Google Scholar 

  19. Hromadka, T.V.: Approximating rainfall-runoff modelling uncertainty using the stochastic integral equation method. Adv. Water Resour. 12(1), 21–25 (1989)

    Google Scholar 

  20. Huang, L., Xian-Fang, L., Zhao, Y., Duan, X.Y.: Approximate solution of fractional integro-differential equations by Taylor expansion method. Comput. Math. Appl. 62(3), 1127–1134 (2011)

    MathSciNet  MATH  Google Scholar 

  21. Hui-Hsiung, K.: Introduction to Stochastic Integration. Springer Science+Business Media Inc, Baton Rouge (2006)

    MATH  Google Scholar 

  22. Kamrani, M.: Numerical solution of stochastic fractional differential equations. Numer. Algorithms 68(1), 81–93 (2015)

    MathSciNet  MATH  Google Scholar 

  23. Khodabin, M., Maleknejad, K., Rostami, M., Nouri, M.: Interpolation solution in generalized stochastic exponential population growth model. Appl. Math. Model. 36(3), 1023–1033 (2012)

    MathSciNet  MATH  Google Scholar 

  24. Khodabin, M., Maleknejad, K., Fallahpour, M.: Approximation solution of two-dimensional linear stochastic Fredholm integral equation by applying the Haar wavelet. Int. J. Math. Model. Comput. 5(4), 361–372 (2015)

    Google Scholar 

  25. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Application of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  26. Klebaner, E.C.: Introduction to Stochastic Calculus with Applications. Imperial College Press, London (2005)

    MATH  Google Scholar 

  27. Lancaster, P., Salkauskas, P.S.: Surfaces generated by moving least squares methods. Math. Comput. 37(155), 141–158 (1981)

    MathSciNet  MATH  Google Scholar 

  28. Li, X., Tang, T.: Convergence analysis of Jacobi spectral collocation methods for AbelVolterra integral equations of second kind. Front. Math. China. 7, 69–84 (2012)

    MathSciNet  MATH  Google Scholar 

  29. Matinfar, M., Taghizadeh, E., Pourabd, M.: Application of moving least squares algorithm for solving systems of Volterra integral equations. Int. J. Nonlinear Sci. Numer. Simul. 22(3–4), 255–265 (2021)

    MathSciNet  MATH  Google Scholar 

  30. Mirzaee, F., Samadyar, N.: Application of operational matrices for solving system of linear Stratonovich Volterra integral equation. J. Comput. Appl. Math. 320, 164–175 (2017)

    MathSciNet  MATH  Google Scholar 

  31. Mirzaee, F., Samadyar, N., Hoseini, S.F.: A new scheme for solving nonlinear Stratonovich Volterra integral equations via Bernoulli’s approximation. Appl. Anal. 96(13), 2163–2179 (2017)

    MathSciNet  MATH  Google Scholar 

  32. Mirzaee, F., Alipour, S.: Cubic B-spline approximation for linear stochastic integro-differential equation of fractional order. J. Comput. Appl. Math. 366, 112440 (2020)

    MathSciNet  MATH  Google Scholar 

  33. Mirzaee, F., Solhi, E., Samadyar, N.: Moving least squares and spectral collocation method to approximate the solution of stochastic Volterra–Fredholm integral equations. Appl. Numer. Math. 161, 275–285 (2021)

    MathSciNet  MATH  Google Scholar 

  34. Mirzaei, D.: Analysis of moving least squares approximation revisited. J. Comput. Appl. Math. 282, 237–250 (2015)

    MathSciNet  MATH  Google Scholar 

  35. Mohammadi, F.: Wavelet Galerkin method for solving stochastic fracthional differential equations. J. Fract. Calc. Appl. 7, 73–86 (2016)

    MathSciNet  MATH  Google Scholar 

  36. Rossikhin, Y.A., Shitikova, M.V.: Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids. Appl. Mech. Rev. (1997). https://doi.org/10.1115/1.3101682

    Article  Google Scholar 

  37. Samadyar, N., Mirzaee, F.: Numerical solution of two-dimensional stochastic Fredholm integral equations on hypercube domains via meshfree approach. J. Comput. Appl. Math. 377, 112–875 (2020)

    MathSciNet  MATH  Google Scholar 

  38. Shepard, D.: A two-dimensional interpolation function for irregularly spaced points. In: Proc. 23rd Nat. Conf. ACM, ACM Press. New York. pp. 517-524 (1968)

  39. Singh, A.K., Mehra, M.: Wavelet collocation method based on Legendre polynomials and its application in solving the stochastic fractional integro-differential equations. J. Comput. Sci. 51, 101342 (2021)

    MathSciNet  Google Scholar 

  40. Taghizadeh, E., Matinfar, M.: Modified numerical approaches for a class of Volterra integral equations with proportional delays. Comput. Appl. Math. 38(63), 1–19 (2019)

    MathSciNet  MATH  Google Scholar 

  41. Tocino, A., Ardanuy, R.: Runge–Kutta methods for numerical solution of stochastic differential equations. J. Comput. Appl. Math. 138(2), 219–241 (2002)

    MathSciNet  MATH  Google Scholar 

  42. Wendland, H.: Scattered Data Approximation. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  43. Zuppa, C.: Error estimates for moving least square approximations. Bull. Braz. Math. Soc. 34(2), 231–249 (2003)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank the referees for providing them suggestions and constructive comments which led to the improvement of this article.

Funding

There was no funding support for the work reported in the paper.

Author information

Authors and Affiliations

Authors

Contributions

All authors read and approved the final manuscript.

Corresponding author

Correspondence to Zahra El Majouti.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Majouti, Z., Taghizadeh, E. & El Jid, R. A Meshless Method for the Numerical Solution of Fractional Stochastic Integro-Differential Equations Based on the Moving Least Square Approach. Int. J. Appl. Comput. Math 9, 27 (2023). https://doi.org/10.1007/s40819-023-01521-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-023-01521-7

Keywords

Navigation