Skip to main content
Log in

Inclined MHD and Radiative Maxwell Slip Fluid Flow and Heat Transfer due to Permeable Melting Surface with a Non-linear Heat Source

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

The study analyzed a non-Newtonian Maxwell fluid flow past a permeable and melting surface with non-linear thermal radiation, inclined magnetic field chemical reaction with higher-order and non-uniform heat sources effects numerically. The governing PDEs are transformed into non-linear ODEs and solved by the shooting technique based on Runge Kutta with MATLAB toolbox. The results are shown graphically and in tabular form. The apprehensions of pictorial and tabular notations are used to analyze the effect of physical parameters governing velocity, energy, and mass. The obtained result thus confirms that an excellent agreement is achieved with those available in the open literature. The outcomes are represented as a magnetic parameter, porosity parameter and Maxwell fluid parameter have reduced the momentum boundary layer thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig.17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Palani, S., Kumar, B.R., Kameswaran, P.K.: Unsteady MHD flow of a UCM fluid over a stretching surface with higher-order chemical reaction. Ain. Shams. Eng. J. 7, 399–408 (2016)

    Article  Google Scholar 

  2. Mukhopadhyay, S., Golam, A.M., Wazed, A.P.: Effects of transpiration on unsteady MHD flow of a UCM fluid passing through a stretching surface in the presence of a first-order chemical reaction. Chin. Phys. B 22, 124701 (2013)

    Article  Google Scholar 

  3. Daba, M., Devaraj, P.: Unsteady hydromagnetic chemically reacting mixed convection flow over a permeable stretching surface with slip and thermal radiation. J. Niger. Math. Soc. 35, 245–256 (2016)

    Article  MathSciNet  Google Scholar 

  4. Hayat, T., Qasim, M.: Influence of thermal radiation and Joule heating on MHD flow of a Maxwell fluid in the presence of thermophoresis. Int. J. Heat Mass Transf. 53, 4780–4788 (2010)

    Article  Google Scholar 

  5. Ray, A.K., Anwar Beg, O., Gorla, R.S.R., Murthy, P.V.S.N.: Magneto-bioconvection flow of a Casson thin film with nanoparticles over an unsteady stretching sheet: HAM and GDQ computation. Int. J. Numer. Method Heat Fluid Flow 29(11), 4277–4309 (2019)

    Article  Google Scholar 

  6. Vasu, B., Gorla, R.S.R., Murthy, P.V.S.N.: Entropy analysis of a convective film flow of a power-law fluid with nanoparticles along an inclined plate. J. Appl. Mech. Tech. Phys. 60, 827–841 (2019)

    Article  MathSciNet  Google Scholar 

  7. Ray, A.K., Vasu, B., Murthy, P.V.S.N., Gorla, R.S.R.: Non-similar solution of eyring-powell fluid flow and heat transfer with convective boundary condition: homotopy analysis method. Int. J. Appl. Comput. Math 6, 16 (2020)

    Article  MathSciNet  Google Scholar 

  8. Abel, M.S., Tawade, J.V., Shinde, J.N.: The effects of MHD flow and heat transfer for the UCM fluid over a stretching surface in presence of thermal radiation. Adv. Math. Phys. 2012, 702681 (2012)

    Article  Google Scholar 

  9. Kumari, M., Nath, G.: Steady mixed convection stagnation-point flow of upper convected Maxwell fluids with magnetic field. Int. J. Non-Linear Mech. 44, 1048–1055 (2009)

    Article  Google Scholar 

  10. Sadeghy, K., Najafi, A.H., Saffaripour, M.: Sakiadis flow of an upper-convected Maxwell fluid. Int. J. Nonlinear Mech. 40, 1220–1228 (2005)

    Article  Google Scholar 

  11. Sadeghy, K., Hajibeygi, H., Taghavi, S.M.: Stagnation point flow of upper convected Maxwell fluids. Int. J. Non-linear Mech. 41, 1242–1247 (2006)

    Article  Google Scholar 

  12. Mukhopadhyay, S.: Heat transfer analysis of the unsteady flow of a Maxwell fluid over a stretching surface in the presence of a heat source/sink”. Chin. Phys. Let. (2011). https://doi.org/10.1088/0256-307X/29/5/054703

    Article  Google Scholar 

  13. Hayat, T., Shehzad, S.A., Alsaedi, A.: MHD three-dimensional flow of Maxwell fluid with variable thermal conductivity and heat source/sink. Int. J. Numer. Method Heat Fluid Flow 24, 1073–1085 (2014)

    Article  MathSciNet  Google Scholar 

  14. Mushtaq, A., Abbasbandy, S., Mustafa, M., Hayat, T., Alsaedi, A.: Numerical solution for Sakiadis flow of upper-convected Maxwell fluid using Cattaneo-Christov heat flux model. AIP Adv. 6, 015208 (2016). https://doi.org/10.1063/1.4940133

    Article  Google Scholar 

  15. Hayat, T., Fetecau, C., Sajid, M.: On MHD transient flow of a Maxwell fluid in a porous medium and rotating frame. Phys. Lett. A 372, 1639–1644 (2008)

    Article  Google Scholar 

  16. Hayat, T., Abbas, Z., Sajid, M.: Series solution for the upper convected Maxwell fluid over a porous stretching plate. Phys. Lett. A 358, 396–403 (2006)

    Article  Google Scholar 

  17. Noor, N.F.M.: Analysis for MHD flow of a Maxwell fluid past a vertical stretching sheet in the presence of thermophoresis and chemical reaction. World Acad. Sci. Eng. Technol. 64, 1019–1023 (2012)

    Google Scholar 

  18. Fetecau, C., Fetecau, C.: A new exact solution for the flow of a Maxwell fluid past an infinite plate. Int. J. Non-linear Mech. 38, 423–427 (2003)

    Article  MathSciNet  Google Scholar 

  19. Motsa, S.S., Hayat, T., Aldossary, O.M.: MHD flow of upper convected Maxwell fluid over porous stretching sheet using successive Taylor series linearization method. Appl. Math. Mech. 33(8), 975–990 (2012)

    Article  MathSciNet  Google Scholar 

  20. Vasu, B., Ram Reddy, C., Murthy, P.V.S.N., Gorla, R.S.R.: Entropy generation analysis in nonlinear convection flow of thermally stratified fluid in saturated porous medium with convective boundary condition. ASME J. Heat Transf. 139(9), 091701 (2017)

    Article  Google Scholar 

  21. Abel, M.S., Siddheshwar, P.G., Nandeppanavar, M.M.: Heat transfer in a viscoelastic fluid past a stretching sheet with a non-uniform heat source. Int. J. Heat Mass Transf. 50, 960–966 (2007)

    Article  Google Scholar 

  22. Pantokratoras, A., Fang, T.: Sakiadis flow with nonlinear Rosseland thermal radiation. Phys. Scr. 87(1), 5 (2013)

    Article  Google Scholar 

  23. Cortell, R.: Fluid flow and radiative nonlinear heat transfer over a stretching sheet. J. King Saud Univ. Sci. 26, 161–7 (2014)

    Article  Google Scholar 

  24. Mushtaq, A., Mustafa, M., Hayat, T., Alsaedi, A.: Effect of thermal radiation on the stagnation-point flow of upper convected Maxwellfluid over a stretching sheet. J. Aerosp. Eng. 27, 04014015 (2014)

    Article  Google Scholar 

  25. Mushtaq, A., Mustafa, M., Hayat, T., Alsaedi, A.: Nonlinear radiative heat transfer in the flow of nanofluid due to solar energy. J. Taiwan Inst. Chem. Eng. 45(54), 1176–1183 (2014)

    Article  Google Scholar 

  26. Mukhopadhyay, S., Ranjan, D.P., Layek, G.C.: Heat transfer characteristics for the Maxwell fluid flow past an unsteady stretching permeable surface embedded in a porous medium with thermal radiation. J. Appl. Mech. Tech. Phys. 54(3), 385–396 (2013)

    Article  Google Scholar 

  27. Nadeem, S., Hussain, S.T.: Flow and heat transfer analysis of Williamson nano-fluid. Appl. Nano-sci. Einstein Ann. Phys. 19, 286 (2013)

    Google Scholar 

  28. Khan, W.A., Pop, I.: Boundary-layer flow of a nanofluid past a stretching sheet. Int. J Heat Mass Transf. 53, 2477–2483 (2010)

    Article  Google Scholar 

  29. Gorla, R.S.R., Sidawi, I.: Free convection on a vertical stretching surface with suction and blowing. Appl. Sci Res. 52, 247–257 (1994)

    Article  Google Scholar 

  30. Wang, Y.: Free convection on a vertical stretching surface. J.. Appl. Math. Mech. 69, 418–420 (1986)

    MATH  Google Scholar 

  31. Narayana, K.L., Gangadhar, K., Subhakar, M.J.: Effect of viscous dissipation on heat transfer of magneto-Williamson nano fluid. IOSR-JM 11(4), 25–37 (2015)

    Google Scholar 

  32. Andersson, H.I., Hansen, O.R., Holmedal, B.: Diffusion of a chemically reactive species from a stretching sheet. Int. J. Heat Mass Transf. 37, 659–664 (1994)

    Article  Google Scholar 

  33. Prasad, K.V., Sujatha, A., Vajravelu, K., Pop, I.: MHD flow and heat transfer of a UCM fluid over a stretching surface with variable thermos-physical properties. Meccanica 47, 1425–1439 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Parmar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dadheech, A., Parmar, A. & Olkha, A. Inclined MHD and Radiative Maxwell Slip Fluid Flow and Heat Transfer due to Permeable Melting Surface with a Non-linear Heat Source. Int. J. Appl. Comput. Math 7, 89 (2021). https://doi.org/10.1007/s40819-021-01021-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-021-01021-6

Keywords

Navigation