Skip to main content
Log in

MHD Free Convection in a Partially Heated Open-Ended Square Cavity: Effect of Angle of Magnetic Field and Heater Location

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

A computational analysis based upon the kinetic, mesoscopic numerical tool is adapted for elucidating the buoyancy-driven convection in the square shaped open cavity having the partially active wall under the influence of the uniform magnetic field (B). A heater (size- half of the height of the cavity) is positioned along the vertical, no-slip wall of the cavity (while another vertical end is open to the atmosphere). Other regions of no-slip partially heated vertical wall, as well as top and bottom walls, are thermally insulated. The significance of heater location (bottom, middle and top), the angle of magnetic field (0°, 45° and 90°), Hartmann number (0–100) and Rayleigh number (103–105) on natural convection have been illustrated. The interpretation of results have been carried out by studying the streamlines, isotherms, centreline variation of temperature; velocity component profiles and Nusselt number (local, average). The dependence of the Nusselt number with the magneto-convective parameter is presented and discussed. Heat transfer rate increases with the angle of the magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Kahveci, K., Oztuna, S.: MHD natural convection flow and heat transfer in a laterally heated partitioned enclosure. Eur. J. Mech. B Fluids 28, 744–752 (2009)

    Article  MathSciNet  Google Scholar 

  2. Gangawane, K.M.: Computational analysis of mixed convection heat transfer characteristics in lid-driven cavity containing triangular block with constant heat flux: effect of Prandtl and Grashof numbers. Int. J. Heat Mass Transf. 105, 34–57 (2017)

    Article  Google Scholar 

  3. Gangawane, K.M.: Effect of angle of applied magnetic field on natural convection in an open ended cavity with partially active walls. Chem. Eng. Res. Des. 127, 22–34 (2017)

    Article  Google Scholar 

  4. Gangawane, K.M., Manikandan, B.: Laminar natural convection characteristics in an enclosure with heated hexagonal block for non-Newtonian power law fluids. Chin. J. Chem. Eng. 25, 555–571 (2017)

    Article  Google Scholar 

  5. Gangawane, K.M., Bharti, R.P.: Computational analysis of magneto-hydrodynamic natural convection in partially differentially heated cavity: effect of cooler size. Proc. Mech. E Part C J. Mech. Eng. Sci. 232(3), 515–528 (2018)

    Article  Google Scholar 

  6. Yu, P.X., Qiu, J.X., Qin, Q., Tian, Z.F.: Numerical investigation of natural convection in a rectangular cavity under different directions of uniform magnetic field. Int. J. Heat Mass Transf. 67, 1131–1144 (2013)

    Article  Google Scholar 

  7. Souza, J.V.D., Fraisse, G., Pailha, M., Xin, S.: Experimental study of a partially heated cavity of an integrated collector storage solar water heater (ICSSWH). Sol. Energy 101, 53–62 (2014)

    Article  Google Scholar 

  8. Sheikholeslami, M., Gorji-Bandpy, M., Ganji, D.D.: Lattice Boltzmann method for MHD natural convection heat transfer using nanofluid. Powder Technol. 254, 82–93 (2014)

    Article  Google Scholar 

  9. Gangawane, K.M., Bharti, R.P., Kumar, S.: Lattice Boltzmann analysis of natural convection in a partially heated open ended enclosure for different fluids. J. Taiwan Inst. Chem. Eng. 49, 27–39 (2015)

    Article  Google Scholar 

  10. Gangawane, K.M., Bharti, R.P., Kumar, S.: Lattice Boltzmann analysis of effect of heating location and Rayleigh number on natural convection in partially heated open ended cavity. Korean J. Chem. Eng. 32(8), 1498–1514 (2015)

    Article  Google Scholar 

  11. Gangawane, K.M., Bharti, R.P., Kumar, S.: Effects of heating location and size on natural convection in partially heated open ended enclosure by using lattice Boltzmann method. Heat Transf. Eng. 36(7), 507–522 (2016)

    Article  Google Scholar 

  12. Sheikholeslami, M., Ellahi, R.: Three dimensional mesoscopic simulation of magnetic field effect on natural convection of nanofluid. Int. J. Heat Mass Transf. 89, 799–808 (2015)

    Article  Google Scholar 

  13. Bondareva, N.S., Sheremet, M.A., Oztop, H.F., Abu-Hamdeh, N.: Heatline visualization of MHD natural convection in an inclined wavy open porous cavity filled with a nanofluid with a local heater. Int. J. Heat Mass Transf. 99, 872–881 (2016)

    Article  Google Scholar 

  14. Miroshnichenko, I.V., Sheremeta, M.A., Oztop, H.F., Al-Salem, K.: MHD natural convection in a partially open trapezoidal cavity filled with a nanofluid. Int. J. Mech. Sci. 119, 294–302 (2016)

    Article  Google Scholar 

  15. Kefayati, G.H.R.: Simulation of double diffusive MHD (magnetohydrodynamic) natural convection and entropy generation in an open cavity filled with power-law fluids in the presence of Soret and Dufour effects (Part I: Study of fluid flow, heat and mass transfer). Energy 107, 889–916 (2016)

    Article  Google Scholar 

  16. Kefayati, G.H.R.: Mesoscopic simulation of magnetic field effect on natural convection of power-law fluids in a partially heated cavity. Chem. Eng. Res. Des. 94, 337–354 (2015)

    Article  Google Scholar 

  17. Kefayati, G.H.R.: Simulation of heat transfer and entropy generation of MHD natural convection of non-Newtonian nanofluid in an enclosure. Int. J. Heat Mass Transf. 92, 1066–1089 (2016)

    Article  Google Scholar 

  18. Sheremet, M.A., Oztop, H.F., Pop, I., Al-Salem, K.: MHD free convection in a wavy open porous tall cavity filled with nanofluids under an effect of corner heater. Int. J. Heat Mass Transf. 103, 955–964 (2016)

    Article  Google Scholar 

  19. Hayat, T., Qayyum, S., Alsaedi, A., Shafiq, A.: Inclined magnetic field and heat source/sink aspects in flow of nanofluid with nonlinear thermal radiation. Int. J. Heat Mass Transf. 103, 99–107 (2016)

    Article  Google Scholar 

  20. Selimefendigil, F., Oztop, H.F.: MHD mixed convection and entropy generation of power law fluids in a cavity with a partial heater under the effect of a rotating cylinder. Int. J. Heat Mass Transf. 98, 40–51 (2016)

    Article  Google Scholar 

  21. Sheikholeslami, M., Hayat, T., Alsaedi, A.: MHD free convection of Al2O3–H2O nanofluid considering thermal radiation: a numerical study. Int. J. Heat Mass Transf. 96, 513–524 (2016)

    Article  Google Scholar 

  22. Kolsi, L., Mahian, O., Oztop, H.F., Aich, W., Borjini, M.N., Abu-Hamdeh, N., Ben Aissia, H.: 3D Buoyancy-induced flow and entropy generation of nanofluid-filled open cavities having adiabatic diamond shaped obstacles. Entropy 18(232), 1–18 (2016). https://doi.org/10.3390/e18060232

    Article  MathSciNet  Google Scholar 

  23. Chamkha, A.J., Rashad, A.M., Mansour, M.A., Armaghani, T., Ghalambaz, M.: Effects of heat sink and source and entropy generation on MHD mixed convection of a Cu–water nanofluid in a lid-driven square porous enclosure with partial slip. Phys. Fluids 29, 052001 (2017). https://doi.org/10.1063/1.4981911

    Article  Google Scholar 

  24. Chamkha, A.J., Rashad, A.M., Armaghani, T., Mansour, M.A.: Effects of partial slip on entropy generation and MHD combined convection in a lid-driven porous enclosure saturated with a Cu–water Nanofluid. J. Therm. Anal. Calorim. 132, 1291–1306 (2018)

    Article  Google Scholar 

  25. Rashad, A.M., Armaghani, T., Chamkha, A.J., Mansour, M.A.: Entropy generation and MHD natural convection of a nanofluid in an inclined square porous cavity: effects of a heat sink and source size and location. Chin. J. Phys. 56(1), 193–211 (2018)

    Article  Google Scholar 

  26. Astanina, M.S., Sheremet, M.A., Oztop, H.F., Abu-Hamdeh, N.: MHD natural convection and entropy generation of ferrofluid in an open trapezoidal cavity partially filled with a porous medium. Int. J. Mech. Sci. 136, 493–502 (2018)

    Article  Google Scholar 

  27. Armaghani, T., Kasaeipoor, A., Izadi, M., Pop, I.: MHD natural convection and entropy analysis of a nanofluid inside T-shaped baffled enclosure. Int. J. Numer. Methods Heat Fluid Flow 28(12), 2916–2941 (2018)

    Article  Google Scholar 

  28. Armaghani, T., Rashad, A.M., Vahidifar, O., Mishra, S.R., Chamkha, A.J.: Effects of discrete heat source location on heat transfer and entropy generation of nanofluid in an open inclined L-shaped cavity. Int. J. Numer. Methods Heat Fluid Flow (2018). https://doi.org/10.1108/HFF-07-2018-0412

    Article  Google Scholar 

  29. Armaghani, T., Esmaeili, H., Mohammadpoor, Y.A., Pop, I.: MHD mixed convection flow and heat transfer in an open C-shaped enclosure using water-copper oxide nanofluid. Heat Mass Transf. 54, 1791–1801 (2018)

    Article  Google Scholar 

  30. Sajjadi, H., Delouei, A.A., Atashafrooz, M., Sheikholeslami, M.: Double MRT Lattice Boltzmann simulation of 3-D MHD natural convection in a cubic cavity with sinusoidal temperature distribution utilizing nanofluid. Int. J. Heat Mass Transf. 126, 489–503 (2018)

    Article  Google Scholar 

  31. Ashorynejad, H.R., Shahriari, A.: MHD natural convection of hybrid nanofluid in an open wavy cavity. Results Phys. 9, 440–455 (2018)

    Article  Google Scholar 

  32. Abedini, A., Armaghani, T., Chamkha, A.J.: MHD free convection heat transfer of a water-Fe3O4 nanofluid in a baffled C-shaped enclosure. J. Therm. Anal. Calorim. 135, 685–695 (2019)

    Article  Google Scholar 

  33. Alsabery, A.I., Armaghani, T., Chamkha, A.J., Adil Sadiq, M., Hashim, I.: Effects of two-phase nanofluid model on convection in a double lid-driven cavity in the presence of a magnetic field. Int. J. Numer. Methods Heat Fluid Flow (2018). https://doi.org/10.1108/HFF-07-2018-0386

    Article  Google Scholar 

  34. Lia, Z., Sheikholeslamic, M., Chamkhad, A.J., Raizah, Z.A., Saleem, S.: Control volume fnite element method for nanofluid MHD natural convective flow inside a sinusoidal annulus under the impact of thermal radiation. Comput. Methods Appl. Mech. Eng. 338, 618–633 (2018)

    Article  Google Scholar 

  35. Kandaswamy, P., Malliga Sundari, S., Nithyadevi, N.: Magnetoconvection in an enclosure with partially active vertical walls. Int. J. Heat Mass Transf. 51, 1946–1954 (2008)

    Article  Google Scholar 

  36. Rudraiah, N., Barron, R.M., Venkatachalappa, M., Subbaraya, C.K.: Effect of a magnetic field on free convection in a rectangular enclosure. Int. J. Eng. Sci. 33, 1075–1084 (1995)

    Article  Google Scholar 

  37. Mohamad, A.A., El-Ganaoui, M., Bennacer, R.: Lattice Boltzmann simulation of natural convection in an open ended cavity. Int. J. Therm. Sci. 48, 1870–1875 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krunal M. Gangawane.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gangawane, K.M. MHD Free Convection in a Partially Heated Open-Ended Square Cavity: Effect of Angle of Magnetic Field and Heater Location. Int. J. Appl. Comput. Math 5, 63 (2019). https://doi.org/10.1007/s40819-019-0652-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s40819-019-0652-9

Keywords

Navigation