Skip to main content
Log in

Numerical modeling of natural convection in horizontal and inclined square cavities filled with nanofluid in the presence of magnetic field

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

In this paper, we have studied the problem of natural convection in an inclined square cavity filled with a Cu/water nanofluid; this is done under a differentially heated configuration in the presence of a magnetic field which tracks the cavity in its inclination. The dimensionless governing equations formulated using stream function, vorticity and temperature have been solved by the finite difference method of second-order accuracy, where the upwind scheme is employed to discretize the convective terms. It turned out that the developed code requires a numerical validation. To do this, a comparison with previously published numerical and experiments results, as well as with the result of simulations under the COMSOL Multiphysics software was performed. The results thus found express very good agreement with the results of the developed code. Heat transfer and fluid flow are examined for parameters of nanoparticles volume fraction (\(0\% \leq \phi \leq 20\%\)), Grashof number (\( 10^{3}\leq Gr\leq 10^{5}\), Hartmann number (\( 0\leq Ha^{2}\leq 100\)), and the cavity inclination angle (\( 0^{\circ}\leq\gamma \leq\pi/2\)). Thus, it is found that a good enhancement in the heat transfer rate can be obtained by adding copper nanoparticles to the base fluid, as well as the increasing of Grashof number. However, the presence of the magnetic field in the fluid region causes a significant reduction in the fluid flow and heat transfer characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Fouladi, A.P. Wemhoff, L. Silva-Llanca, K. Abbasi, A. Ortega, Appl. Therm. Eng. 124, 929 (2017)

    Article  Google Scholar 

  2. A.S. Yang, C.Y. Wen, Y.H. Juan, Y.M. Su, J.H. Wu, Appl. Therm. Eng. 70, 219 (2014)

    Article  Google Scholar 

  3. L. Phan, C.X. Lin, Energy Build. 77, 364 (2014)

    Article  Google Scholar 

  4. A.Y. Snegirev, Combust. Flame 136, 51 (2004)

    Article  Google Scholar 

  5. R. Saidur, K.Y. Leong, H.A. Mohammad, Renew. Sustain. Energy Rev. 15, 1646 (2011)

    Article  Google Scholar 

  6. R. Taylor et al., J. Appl. Phys. 113, 011301 (2013)

    Article  ADS  Google Scholar 

  7. O. Mahian, A. Kianifar, S.A. Kalogirou, I. Pop, S. Wongwises, Int. J. Heat Mass Transfer 57, 582 (2013)

    Article  Google Scholar 

  8. F. Garoosi, L. Jahanshaloo, M.M. Rashidi, A. Badakhsh, M.E. Ali, Appl. Math. Comput. 254, 183 (2015)

    MathSciNet  Google Scholar 

  9. O. Mahian, A. Kianifar, S.Z. Heris, S. Wongwises, Int. J. Heat Mass Transfer 99, 792 (2016)

    Article  Google Scholar 

  10. H. Karatas, T. Derbentli, Int. J. Therm. Sci. 123, 129 (2018)

    Article  Google Scholar 

  11. Y. Wang, G. Qin, W. He, Z. Bao, Int. J. Heat Mass Transfer 121, 1055 (2018)

    Article  Google Scholar 

  12. A. Boualit, N. Zeraibi, T. Chergui, M. Lebbi, L. Boutina, S. Laouar, Int. J. Hydrogen Energy 42, 8611 (2017)

    Article  Google Scholar 

  13. C.S. Balla, N. Kishan, R.S.R. Gorla, B.J. Gireesha, Ain Shams Eng. J. 8, 237 (2017)

    Article  Google Scholar 

  14. K. Khanafer, K. Vafai, M. Lightstone, Int. J. Heat Mass Transfer 46, 3639 (2003)

    Article  Google Scholar 

  15. J. Xamán, J. Arce, G. Álvarez, Y. Chávez, Int. J. Therm. Sci. 47, 1630 (2008)

    Article  Google Scholar 

  16. H.F. Oztop, E. Abu-Nada, Int. J. Heat Fluid Flow 29, 1326 (2008)

    Article  Google Scholar 

  17. S. Houat, Z.E. Bouayed, Energy Proc. 139, 186 (2017)

    Article  Google Scholar 

  18. A.R. Rahmati, A. Rayat Roknabadi, M. Abbaszadeh, Alex. Eng. J. 55, 3101 (2016)

    Article  Google Scholar 

  19. A. Bairi, E. Zarco-Pernia, J.M. García De María, Appl. Therm. Eng. 63, 304 (2014)

    Article  Google Scholar 

  20. T. Armaghani, A. Kasaeipoor, N. Alavi, M.M. Rashidi, J. Mol. Liq. 223, 243 (2016)

    Article  Google Scholar 

  21. M.A. Ismael, H.F. Jasim, Int. J. Mech. Sci. 135, 190 (2018)

    Article  Google Scholar 

  22. S.M.S. Murshed, K.C. Leong, C. Yang, Int. J. Therm. Sci. 47, 560 (2008)

    Article  Google Scholar 

  23. S.K. Das, N. Putra, P. Thiesen, W. Roetzel, J. Heat Transf. 125, 567 (2003)

    Article  Google Scholar 

  24. Y. Xuan, Q. Li, Int. J. Heat Fluid Flow 21, 58 (2000)

    Article  Google Scholar 

  25. H.C. Brinkman, J. Chem. Phys. 20, 571 (1952)

    Article  ADS  Google Scholar 

  26. E.J. Wasp, J.P. Kenny, R.L. Gandhi, Solid-Liquid Flow: Slurry Pipeline Transportation, in Series on Bulk Materials Handling, Vol. 1, no. 4 (Trans Tech Publications, 1977)

  27. S. Lee, S.U.-S. Choi, S. Li, J.A. Eastman, J. Heat Transf. 121, 280 (1999)

    Article  Google Scholar 

  28. A. Amiri, F. Vafai, Int. J. Heat Mass Transfer 37, 939 (1994)

    Article  Google Scholar 

  29. G. De Vahl Davis, Int. J. Numer. Methods Fluids 3, 249 (1983)

    Article  ADS  Google Scholar 

  30. T. Fusegi, J.M. Hyun, K. Kuwahara, B. Farouk, Int. J. Heat Mass Transfer 34, 1543 (1991)

    Article  Google Scholar 

  31. M.A.H. Mamun, W.H. Leong, K.G.T. Hollands, D.A. Johnson, Int. J. Heat Mass Transfer 46, 3655 (2003)

    Article  Google Scholar 

  32. G. Nardini, M. Paroncini, F. Corvaro, Heat Transf. Eng. 35, 875 (2014)

    Article  ADS  Google Scholar 

  33. M.A. Sheremet, I. Pop, O. Mahian, Int. J. Heat Mass Transfer 116, 751 (2018)

    Article  Google Scholar 

  34. R. Yaghoubi Emami, M. Siavashi, G. Shahriari Moghaddam, Adv. Powder Technol. 29, 519 (2018)

    Article  Google Scholar 

  35. S. Hussain, H.F. Öztop, K. Mehmood, N. Abu-Hamdeh, Chin. J. Phys. 56, 484 (2018)

    Article  Google Scholar 

  36. A.I. Alsabery, A.J. Chamkha, H. Saleh, I. Hashim, Sci. Rep. 7, 2357 (2017)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Bendaraa.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bendaraa, A., Charafi, M.M. & Hasnaoui, A. Numerical modeling of natural convection in horizontal and inclined square cavities filled with nanofluid in the presence of magnetic field. Eur. Phys. J. Plus 134, 468 (2019). https://doi.org/10.1140/epjp/i2019-12814-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12814-8

Navigation