Skip to main content
Log in

Reduction of Kinetic Equations to Liénard–Levinson–Smith Form: Counting Limit Cycles

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

We have presented an unified scheme to express a class of system of equations in two variables into a Liénard–Levinson–Smith (LLS) oscillator form. We have derived the condition for limit cycle with special reference to Rayleigh and Liénard systems for arbitrary polynomial functions of damping and restoring force. Krylov–Boguliubov (K–B) method is implemented to determine the maximum number of limit cycles admissible for a LLS oscillator atleast in the weak damping limit. Scheme is illustrated by a number of model systems with single cycle as well as the multiple cycle cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Murray, J.D.: Mathematical Biology. Springer, Berlin (1989)

    Book  Google Scholar 

  2. Murray, J.D.: Lectures on Non-linear Differential Equation Models in Biology. Oxford University Press, Oxford (1977)

    Google Scholar 

  3. Epstein, I.R., Pojman, J.A.: An Introduction to Nonlinear Chemical Dynamics: Oscillations, Waves, Patterns, and Chaos. Oxford University Press, New York (1998)

    Google Scholar 

  4. Strogatz, S.H.: Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering. Westview Press, Boulder (1994)

    MATH  Google Scholar 

  5. Goldbeter, A., Berridge, M.J.: Biochemical Oscillations and Cellular Rhythms: The Molecular Bases of Periodic and Chaotic Behaviour. Cambridge University Press, Cambridge (1996)

    Book  Google Scholar 

  6. Mickens, R.E.: Oscillations in Planar Dynamic Systems, vol. 37. World Scientific, Singapore (1996)

    MATH  Google Scholar 

  7. Ross, S.L.: Differential Equations. Wiley, Hoboken (1984)

    MATH  Google Scholar 

  8. Arnold, V.I., Ilyashenko, Y.: Ordinary Differential Equations, Encyclopedia Mathematical Science, 1st edn. Springer, Berlin (1988)

    Google Scholar 

  9. Birkhoff, G.D.: Dynamical Systems. A.M.S Publications, Providence (1927)

    MATH  Google Scholar 

  10. Stoker, J.: Nonlinear Vibrations in Mechanical and Electrical Systems. Wiley Classics Library. Wiley, Hoboken (1992)

    Google Scholar 

  11. Smale, S.: Differentiable dynamical systems. Bull. Am. Math. Soc. 73, 747–817 (1967)

    Article  MathSciNet  Google Scholar 

  12. Jordan, D.W., Smith, P.: Nonlinear Ordinary Differential Equations: An introduction for Scientists and Engineers, 4th edn. Oxford University Press, Oxford (2007)

    MATH  Google Scholar 

  13. Lavrova, A.I., Postnikov, E.B., Romanovsky, Y.M.: Brusselator an abstract chemical reaction? Physics-Uspekhi 52(12), 1239 (2009)

    Article  Google Scholar 

  14. Ghosh, S., Ray, D.S.: Liénard-type chemical oscillator. Eur. Phys. J. B 87, 65 (2014)

    Article  Google Scholar 

  15. Kaiser, F.: Theory of Resonant Effects of RF and MW Energy, pp. 251–282. Springer, Boston (1983)

    Google Scholar 

  16. Kaiser, F., Eichwald, C.: Bifurcation structure of a driven, multi-limit-cycle van der pol oscillator (i): the superharmonic resonance structure. Int. J. Bifurc. Chaos 01(02), 485–491 (1991)

    Article  MathSciNet  Google Scholar 

  17. Ghosh, P., Sen, S., Riaz, S.S., Ray, D.S.: Controlling birhythmicity in a self-sustained oscillator by time-delayed feedback. Phys. Rev. E 83, 036205 (2011)

    Article  MathSciNet  Google Scholar 

  18. Rand, R.H.: Lecture notes on nonlinear vibrations (2012)

  19. Ghosh, S., Ray, D.S.: Rayleigh-type parametric chemical oscillation. J. Chem. Phys. 143(12), 124901 (2015)

    Article  Google Scholar 

  20. Perko, L.: Differential Equations and Dynamical Systems, vol. 7, 2nd edn. Springer, Berlin (1996)

    Book  Google Scholar 

  21. Liénard, A.: Rev. Gen. Electricite 23, 901 (1928)

    Google Scholar 

  22. Levinson, N., Smith, O.K.: Duke Math. J. 9, 382 (1942)

    Article  MathSciNet  Google Scholar 

  23. Levinson, N.: Ann. Math. 45, 723 (1944)

    Article  MathSciNet  Google Scholar 

  24. Saha, S., Gangopadhyay, G.: Isochronicity and limit cycle oscillation in chemical systems. J. Math. Chem. 55, 887–910 (2017)

    Article  MathSciNet  Google Scholar 

  25. Smale, S.: Mathematical problems for the next century. Math. Intell. 20(2), 7–15 (1998)

    Article  MathSciNet  Google Scholar 

  26. Gaiko, V.A.: Limit cycles of liénard-type dynamical systems. Cubo 10, 115–132 (2008)

    MathSciNet  MATH  Google Scholar 

  27. Das, D., Banerjee, D., Bhattacharjee, J.K., Mallik, A.K.: Counting limit cycles with the help of the renormalization group. Eur. Phys. J. D 61, 443–448 (2011)

    Article  Google Scholar 

  28. Das, D., Banerjee, D., Bhattacharjee, J.K.: Finding limit cycles in self-excited oscillators with infinite-series damping functions. Eur. Phys. J. D 69, 85 (2015)

    Article  Google Scholar 

  29. Dutta, A., Das, D., Banerjee, D., Bhattacharjee, J.K.: Estimating the boundaries of a limit cycle in a 2D dynamical system using renormalization group. Commun. Nonlinear Sci. Numer. Simul. 57, 47–57 (2018)

    Article  MathSciNet  Google Scholar 

  30. Krylov, N.M., Bogolyubov, N.N.: Introduction to Non-linear Mechanics. Princeton University Press, Princeton (1947)

    Google Scholar 

  31. Chen, L.Y., Goldenfeld, N., Oono, Y.: Renormalization group theory for global asymptotic analysis. Phys. Rev. Lett. 73, 1311–1315 (1994)

    Article  MathSciNet  Google Scholar 

  32. Chen, L.Y., Goldenfeld, N., Oono, Y.: Renormalization group and singular perturbations: multiple scales, boundary layers, and reductive perturbation theory. Phys. Rev. E 54, 376–394 (1996)

    Article  Google Scholar 

  33. Sarkar, A., Guha, P., Ghose-Choudhury, A., Bhattacharjee, J.K., Mallik, A.K., Leach, P.G.L.: On the properties of a variant of the riccati system of equations. J. Phys. A: Math. Theor. 45(41), 415101 (2012)

    Article  MathSciNet  Google Scholar 

  34. Giacomini, H., Neukirch, S.: Number of limit cycles of the liénard equation. Phys. Rev. E 56, 3809–3813 (1997)

    Article  MathSciNet  Google Scholar 

  35. Sarkar, A., Bhattacharjee, J.K., Chakraborty, S., Banerjee, D.B.: Center or limit cycle: renormalization group as a probe. Eur. Phys. J. D 64, 479–489 (2011)

    Article  Google Scholar 

  36. Kadji, H.G.E., Yamapi, R., Chabi Orou, J.B.: Synchronization of two coupled self-excited systems with multi-limit cycles. Chaos: Interdiscip. J. Nonlinear Sci. 17(3), 033113 (2007)

    Article  MathSciNet  Google Scholar 

  37. Kadji, H.G.E., Chabi Orou, J.B., Yamapi, R., Woafo, P.: Nonlinear dynamics and strange attractors in the biological system. Chaos Solitons Fractals 32(2), 862–882 (2007)

    Article  MathSciNet  Google Scholar 

  38. Yamapi, R., Nana Nbendjo, B.R., Kadji, H.G.E.: Dynamics and active control of motion of a driven multi-limit-cycle van der pol oscillator. Int. J. Bifurc. Chaos 17(04), 1343–1354 (2007)

    Article  MathSciNet  Google Scholar 

  39. Yamapi, R., Filatrella, G., Aziz-Alaoui, M.A.: Global stability analysis of birhythmicity in a self-sustained oscillator. Chaos: Interdiscip. J. Nonlinear Sci. 20(1), 013114 (2010)

    Article  MathSciNet  Google Scholar 

  40. Chéagé Chamgoué, A., Yamapi, R., Woafo, P.: Dynamics of a biological system with time-delayed noise. Eur. Phys. J. Plus 127, 59 (2012)

    Article  Google Scholar 

  41. Saha, S., Gangopadhyay, G.: When an oscillating center in an open system undergoes power law decay. J. Math. Chem. 57, 750–758 (2018)

    Article  MathSciNet  Google Scholar 

  42. Lins, A., de Melo, W., Pugh, C.C.: On Liénard’s Equation, Lecture Notes in Mathematics. Springer, Berlin (1977)

    MATH  Google Scholar 

  43. Rychkov, G.S.: The maximal number of limit cycles of the system \({\dot{y}}=-x, {\dot{x}}=y-\sum \nolimits _{i=0}^{2} a_{i+1} x^{2i+1}\) is equal to two. Differ. Uravn. 11(2), 390–391 (1975)

    Google Scholar 

  44. Blows, T.R., Lloyd, N.G.: The number of small-amplitude limit cycles of linard equations. Math. Proc. Camb. Philos. Soc. 95(2), 359366 (1984)

    Article  Google Scholar 

Download references

Acknowledgements

Sandip Saha acknowledges RGNF, UGC, India for the partial financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gautam Gangopadhyay.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Lotka–Volterra System

Appendix: Lotka–Volterra System

To obtain the LLS form of Lotka–Volterra System [3,4,5], let us set \(z=\delta x+\beta y\) then \({\dot{z}}=\alpha \delta x-\beta \gamma y=u\) \(\implies \) \(x=\frac{{\dot{z}}+\gamma z}{(\alpha +\gamma )\delta }\) and \(y=\frac{-{\dot{z}}+\alpha z}{(\alpha +\gamma )\beta }\). After taking t derivative upon \({\dot{z}}\) one can have,

$$\begin{aligned} \ddot{z} =(\alpha -\gamma ){\dot{z}}+\alpha \gamma z +\frac{{\dot{z}}^2}{\alpha +\gamma }+\frac{\gamma - \alpha }{\alpha +\gamma } z {\dot{z}}-\frac{\alpha \gamma }{\alpha +\gamma } z^2. \end{aligned}$$

The fixed point (0, 0) gives a saddle solution which is not of any interest in the present context. Choosing the remaining non-zero fixed point for further investigations, and after taking perturbation \(z=\xi +z_s\) around the fixed point \(z_s=\alpha +\gamma =\delta x_s+\beta y_s \ne 0\), one can get the LLS form with \(F(\xi ,{\dot{\xi }})=a_1 \xi +a_2 {\dot{\xi }}\) with \(a_1=\frac{\alpha -\gamma }{\alpha +\gamma }\) and \(a_2= - \frac{1}{\alpha +\gamma }\). It is to be noted that \(G(\xi )\) contains nonlinearity with \(G(\xi )=\omega ^2 \xi +a_3 \xi ^2\) where \(\omega =\sqrt{\alpha \gamma }=Im(\lambda )\)(\(+ve\) sense) and \(a_3=\frac{\alpha \gamma }{\alpha +\gamma }\). After introducing a small parameter \(\epsilon _1\) (say) in the constants, \(a_i, b_i\) such that \(a_i=\epsilon _1 b_i, i=1,2,3\) the above equation reduces to \(\ddot{\xi }+\epsilon _1 (b_1 \xi +b_2 {\dot{\xi }}) {\dot{\xi }}+\omega ^2 \xi +\epsilon _1 b_3 \xi ^2=0\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, S., Gangopadhyay, G. & Ray, D.S. Reduction of Kinetic Equations to Liénard–Levinson–Smith Form: Counting Limit Cycles. Int. J. Appl. Comput. Math 5, 46 (2019). https://doi.org/10.1007/s40819-019-0628-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s40819-019-0628-9

Keywords

Navigation