Skip to main content

Advertisement

Log in

Complex Dynamics and Optimal Treatment of an Epidemic Model with Two Infectious Diseases

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we have proposed and formulated an epidemic model with two types of diseases-one is comparative weaker and the other is comparatively stronger with the assumption that both the diseases are active simultaneously in the system. The dynamical behavior of the model; equilibrium analyses with their existence criteria and local stability criteria have been discussed rigorously. With the help of second generation matrix method, we evaluate basic reproduction number of the proposed model. We propose an optimal control problem considering treatment as control parameter and solve it in order to minimize the compound loss due to the presence of infection. All the theoretical results are verified with some appropriate computer simulation works.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Kermack, W.O., Mckendric, A.G.: Contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. Ser. A 115, 700–721 (1927)

    Article  Google Scholar 

  2. Andreasen, V., Lin, J., Levin, S.A.: The dynamics of cocirculating influenza strains conferring partial crossimmunity. J. Math. Biol. 35, 825–842 (1997)

    Article  MathSciNet  Google Scholar 

  3. Hethcote, H.W.: The mathematics of infectious diseases. SIAM Rev. 42, 599–653 (2000)

    Article  MathSciNet  Google Scholar 

  4. Driessche, P.V., Watmough, J.: Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180, 29–48 (2002)

    Article  MathSciNet  Google Scholar 

  5. Makinde, O.D., Okosun, K.O.: Impact of chemo-therapy on optimal control of malaria disease with infected immigrants. Biosystems 104, 32–41 (2011)

    Article  Google Scholar 

  6. Kar, T.K., Jana, S.: Application of three controls optimally in a vector-borne disease a mathematical study. Commun. Nonlinear Sci. Numer. Simulat. 18, 2868–2884 (2013)

    Article  MathSciNet  Google Scholar 

  7. Okosun, K.O., Makinde, O.D., Takaidza, I.: Impact of optimal control on the treatment of HIV/AIDS and screening of unware infectives. Appl. Math. Model. 37, 3802–3820 (2013)

    Article  MathSciNet  Google Scholar 

  8. Hugo, A., Makinde, O.D., Kumar, S., Chibwana, F.F.: Optimal control and cost effectiveness analysis for newcastle disease eco-epidemiological model in Tanzania. J. Biol. Dyn. 258, 19–32 (2014)

    Google Scholar 

  9. LaSalle, J.P.: The Stability of Dynamical Systems. SIAM, Philadephia (1976)

    Book  Google Scholar 

  10. Guckenheimer, G., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, New York (1983)

    Book  Google Scholar 

  11. Rahaman, M.A., Zou, X.: Flu epidemics; a two-strain flu model with a single vaccination. J. Biol. Dyn. 5(5), 376–390 (2011)

    Article  MathSciNet  Google Scholar 

  12. World Health Organization (2010). http://www.who.int/csr/don/2010_04_09/en/index.html. Accessed 9 Apr 2010

  13. Nishiro, H., Iwata, K.: A simple mathematical approach to deciding the dosage of vaccine against pandemic H1N1 influenza. Euro Surveill. 14, 57–60 (2009)

    Google Scholar 

  14. Kooi, B.W., Aguiar, M., Stollenwerk, N.: Analysis of an asymmetric two-strain dengue model. Math. Biosci. 248, 128–139 (2014)

    Article  MathSciNet  Google Scholar 

  15. Nucci, M.C., Leach, P.G.L.: Lie integrable cases of the simplified multistrain/two-stream model for tuberculosis and dengue fever. J. Math. Anal. Appl. 333, 430–449 (2007)

    Article  MathSciNet  Google Scholar 

  16. Rahman, S.M.A., Zou, X.: Global dynamics of a two-strain disease model with latency and saturating incidence rate. Can. Appl. Math. Q. 20, 51–73 (2012)

    MathSciNet  Google Scholar 

  17. Meng, X., Zhao, S., Feng, T., Zhang, T.: Dynamics of a novel nonlinear stochastic SIS epidemic model with double epidemic hypothesis. J. Math. Anal. Appl. 433, 227–242 (2016)

    Article  MathSciNet  Google Scholar 

  18. Meng, X.Z., Li, Z.Q., Wang, X.L.: Dynamics of a novel nonlinear SIR model with double epidemic hypothesis and impulsive effects. Nonlinear Dyn. 59, 503–513 (2010)

    Article  MathSciNet  Google Scholar 

  19. Eckalbar, J.C., Eckalbar, W.L.: Dynamics of an epidemic model with quadratic treatment. Nonlinear Anal. Real World Appl. 12(1), 320–332 (2011)

    Article  MathSciNet  Google Scholar 

  20. Okosun, K.O., Ouifki, R., Marcus, N.: Optimal control analysis of a malaria disease transmission model that includes treatment and vaccination with waning immunity. Biosystems 106, 136–145 (2011)

    Article  Google Scholar 

  21. Jana, S., Nandi, S.K., Kar, T.K.: Complex dynamics of an SIR epidemic model with saturated incidence rate and treatment. Acta Biotheor. 64, 65–84 (2016)

    Article  Google Scholar 

  22. Okosun, K.O., Makinde, O.D.: A co-infection model of malaria and cholera diseases with optimal control. Math. Biosci. 258, 19–32 (2014)

    Article  MathSciNet  Google Scholar 

  23. Tilahun, G.T., Makinde, O.D., Malonza, D.: C-dynamics of Pnumonia and Typhoid fever disease with cost-effective optimal control analysis. Appl. Math. Comput. 316, 438–459 (2017)

    MATH  Google Scholar 

  24. Zhang, F.-F., Jin, Z., Sun, G.-Q.: Bifurcation analysis of a delayed epidemic model. Appl. Math. Comput. 216, 753–767 (2010)

    MathSciNet  MATH  Google Scholar 

  25. Cai, L., Guo, S., Ghosh, M.: Global dynamic of a dengue epidemic mathematical model. Chaos Solitons Fractals 42, 2297–2304 (2009)

    Article  MathSciNet  Google Scholar 

  26. Kar, T.K., Mandal, P.K.: Global dynmics and bifurcation in delayed SIR epidemic model. Nonlinear Anal. Real World Appl. 12(4), 2058–2068 (2011)

    Article  MathSciNet  Google Scholar 

  27. Birkoff, G., Rota, G.C.: Ordinary Differential Equations. Ginn, Boston (1982)

    Google Scholar 

  28. Diekmann, O., Heesterbeek, J.A.P.: Mathematical Epidemiology of Infectious Diseases, Model Building, Analysis and Interpretation. Wiley, Chichester (2000)

    MATH  Google Scholar 

  29. Chitnis, N., Hyman, J.M., Cushing, J.M.: Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model. Bull. Math. Biol. 70(5), 1272–1296 (2008)

    Article  MathSciNet  Google Scholar 

  30. Jung, E., Lenhart, S., Feng, Z.: Optimal control of treatments in a two-strain tuberculosis model. Discrete Contin. Dyn. Syst. Ser. B 2–4, 473–482 (2002)

    MathSciNet  MATH  Google Scholar 

  31. Joshi, H.R.: Optimal control of an HIV immunology model. Optim. Control Appl. Methods 23, 199–213 (2002)

    Article  MathSciNet  Google Scholar 

  32. Zaman, G., Kang, Y.H., Jung, I.H.: Stability analysis and optimal vaccination of an SIR epidemic model. BioSystems 93, 240–249 (2008)

    Article  Google Scholar 

  33. Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., Mishchenko, E.F.: The Mathematical Theory of Optimal Processes. Wiley, New York (1962)

    MATH  Google Scholar 

  34. Lukes, D.L.: Differential Equations: Classical to Controlled. Academic Press, New York (1982)

    MATH  Google Scholar 

  35. Lenhart, S., Workman, J.T.: Optimal Control Applied to Biological Models. Mathematical and Computational Biology Series. Chapman & Hall/CRC, Boca Raton (2007)

    MATH  Google Scholar 

Download references

Acknowledgements

Research of T. K. Kar is financially supported by the Council of Scientific and Industrial Research (CSIR), Government of India (File No. 25(0224)/13/EMR-11. Dated: 05/09/2013). Further the authors would like to acknowledge the anonymous reviewers and Dr. Santanu Saha Ray, Editor in Chief of the journal for their comments and suggestions and comments regarding the improvement of the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soovoojeet Jana.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

The characteristic equation of the system (1) at the unique endemic equilibrium \(E^*\) is given by:

$$\begin{aligned} \lambda ^4+N_1\lambda ^3+N_2\lambda ^2 +N_3\lambda +N_4=0 \end{aligned}$$
(16)

where, \(N_1=-A_1-B_2-C_3-D_4\), \(N_2=-A_2 B_1+A_1 B_2-A_3 C_1+A_1 C_3+A_1 D_4-B_3 C_2+B_2 C_3+B_2 D_4+C_3 D_4\), \(N_3=A_3 B_2 C_1-A_2 B_3 C_1-A_3 B_1 C_2+A_1 B_3 C_2+A_2 B_1 C_3-A_1 B_2 C_3-A_4 B_1 D_2+A_2 B_1 D_4-A_1 B_2 D_4-A_4 C_1 D_3+A_3 C_1 D_4-A_1 C_3 D_4+B_3 C_2 D_4-B_2 C_3 D_4\), \( N_4=-A_4 B_3 C_1 D_2+A_4 B_1 C_3 D_2+A_4 B_2 C_1 D_3-A_4 B_1 C_2 D_3-A_3 B_2 C_1 D_4+A_2 B_3 C_1 D_4+A_3 B_1 C_2 D_4-A_1 B_3 C_2 D_4-A_2 B_1 C_3 D_4+A_1 B_2 C_3 D_4\) and \(A_1=-d-\alpha I^*_1-\frac{\beta I^*_2}{1+\eta I^*_2}\), \(A_2=-\alpha S^*\), \(A_3=-\frac{\beta S^*}{(1+\eta I^*_{2})^2}\), \(A_4=\sigma \), \(B_1=\alpha I^*_1\), \(B_2=\alpha S^*-\rho I^*_2-(d+m)\), \(B_3=-\rho I^*_1\), \(C_1=\frac{\beta I^*_2}{1+\eta I^*_2}\), \(C_2=\rho I^*_2\), \(C_3=\frac{\beta S^*}{(1+\eta I^*_2)^2}-(d+\delta +\gamma +bu)+\rho I^*_1 \), \(D_2=m\), \(D_3=bu+\gamma \), \(D_4=-(d+\sigma ).\)

Now

(i) \(N_1>0,\;\;\) if \(A_2+A_3+B_1+B_3+\text {bu}+\gamma +C_1+C_2+4 d+2 \delta +m>0,\)

(ii) \(N_2>0,\;\;\) if\(6d^2+\sigma (3d+bu)+(3d+\delta +\gamma +\sigma +bu)(C_1+C_2+B_1+A_2+m)+(3d+m+\sigma +A_2)(B_3+A_3)+(\sigma +3d)(\gamma +\delta +bu)+(B_3+C_2)(C_1+B_1)+A_3(B_1+C_2)+A_2C_3+B_1 m>0,\)

(iii) \(N_3>0,\;\;\) if \((2d+\gamma +\delta +\sigma +bu)(A_2C_1+B_1C_2+C_1C_2+C_1m)+(2d+m+\sigma )(B_3C_1+B_1B_3+A_3B_1+B_1bu)+(C_1+C_2)(3d^2+2\gamma d+2 \delta d+ 2 d \sigma +\delta \sigma +2bud)+(2d+\sigma )(A_3C_2+B_1 \gamma +B_1 \delta +A_2 \delta +\gamma m+\delta m +bum+A_2 \gamma +A_2 bu+A_2 A_3+A_3m+A_2B_3)+2d(m+ \sigma )(B_1+B_3)+(B_1m+2 d \sigma )(\gamma +\delta )+3d^2(A_2+A_3+B_1+B_3+\gamma +\delta +m+\sigma +bu)+2d(A_2 \delta +A_3 \sigma +bum+2d+m \sigma )+\sigma (B_3 m+bu C_2+ \gamma C_2)>0,\)

(iv) \(N_4>0,\;\;\) if \( d^2(B_1+C_1+d)(d+\gamma +\delta +\sigma +bu+m)+d(B_1C_2+A_2C_1+C_1C_2)(d+\gamma +\delta +\sigma +bu)+d(A_3d+B_1B_3+A_3C_2+A_2bu+C_2bu+bum)(d+\delta )+d(A_2 \sigma +d \sigma +m \sigma +C_1m+C_2 \sigma )(\gamma +\delta )+d^2(d+\gamma +\delta +\sigma )(A_2+C_2)+B_1d(\gamma \sigma +\delta \sigma +\gamma m+\delta m)+d^2m(\gamma +\delta +\sigma ) +\delta \sigma (A_2C_1+B_1C_2+C_1C_2+C_1d+B_1bud(m+\sigma )+C_1m \sigma (d+\delta )+bud^2 \sigma +B_3dm \sigma +buC_1dm+A_3dm \sigma +B_1\delta dm >0,\)

\((v)\;\;N_1N_2-N_3>0\) if \(A_1 (A_2 B_1 + A_3 C_1) + A_2 (B_1 B_2 + B_3 C_1) + A_3 B_1 C_2 + B_2 B_3 C_2 + A_3 C_1 C_3 + B_3 C_2 C_3 + A_4 B_1 D_2 + A_4 C_1 D_3 \;\;>\;\; (B_2 + C_3) (B_2 + D_4) (C_3 + D_4) + A_1^2(B_2+C_3+D_4) + A_1 (B_2 + C_3 + D_4)^2.\)

According to the Routh-Hurwitz criterion, all the roots of (16) have negative real parts if all the above (i)–(v) hold and \(N_3(N_1N_2-N_3)>N_4\) also holds good and then the system (1) is locally asymptotically stable around its unique endemic equilibrium point \(E^*\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nandi, S.K., Jana, S., Mandal, M. et al. Complex Dynamics and Optimal Treatment of an Epidemic Model with Two Infectious Diseases. Int. J. Appl. Comput. Math 5, 29 (2019). https://doi.org/10.1007/s40819-019-0613-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s40819-019-0613-3

Keywords

Mathematics Subject Classification

Navigation