Skip to main content
Log in

Optimal Control of an Ecogenetic Model

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

A model for the effects of a predator on a genetically distinguished prey population is formulated and investigated. Equilibria are determined and analyzed for both the complete system and the predator-free subsystem. A control on the genotype of the prey population harming the predators is then added and an optimal control is sought. Numerical simulations are performed to determine how the controlled system behaves and how parameter changes affect the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Venturino, E.: An ecogenetic model. Appl. Math. Lett. 25, 1230–1233 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  2. Viberti, C., Venturino, E.: An ecosystem with Holling type II response and predators’ genetic variability. Math. Model. Anal. 19, 371–394 (2014)

    Article  MathSciNet  Google Scholar 

  3. Usville, I., Viola, C.P., Venturino, E.: An ecogenetic disease-affected predator-prey model. Cogent Math. 3(1), 1195716 (2016). doi:10.1080/23311835.2016.1195716

    Article  MathSciNet  Google Scholar 

  4. Grant, B.S.: Fine tuning the peppered moth paradigm. Evolution 53(3), 980–984 (1999)

    Article  MathSciNet  Google Scholar 

  5. Clarke, B.: Heredity—the art of innuendo. Heredity 90(4), 279–280 (2003). doi:10.1038/sj.hdy.6800229

    Article  Google Scholar 

  6. Hooper, J.: Of Moths and Men: An Evolutionary Tale. W.W. Norton & Company, New York (2002)

    Google Scholar 

  7. Lively, C.M., Apanius, V.: Genetic diversity in host–parasite interactions. In: Grenfell, B.T., Dobson, A.P. (eds.) Ecology of Infectious Diseases, pp. 419–449. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  8. Vrijenhoek, R.C.: The origin and evolution of clones versus the maintenance of sex in Poeciliopsis. J. Hered. 84, 388–395 (1993)

    Article  Google Scholar 

  9. Read, A.F.: Passerine polygyny: a role for parasites? Am. Nat. 138, 434–459 (1991)

    Article  Google Scholar 

  10. Lenhart, S., Workman, J.T.: Optimal Control Applied to Biological Models. Chapman & Hall/CRC, Boca Raton (2007)

    MATH  Google Scholar 

  11. Ledzewicz, U., Schättler, H.: Optimal bang–bang controls for a two-compartment model in cancer chemotherapy. J. Optim. Theory Appl. 114(3), 609–637 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. Silva, C.J., Torres, D.F.M.: Optimal control strategies for tuberculosis treatment: a case study in Angola. Numer. Algebra Control Optim. 2(3), 601–617 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  13. Silva, C.J., Torres, D.F.M.: Optimal control for a tuberculosis model with reinfection and post-exposure interventions. Math. Biosci. 244(2), 154–164 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  14. Rodrigues, P., Silva, C.J., Torres, D.F.M.: Cost-effectiveness analysis of optimal control measures for tuberculosis. Bull. Math. Biol. 76(10), 2627–2645 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  15. Silva, C.J., Maurer, H., Torres, D.F.M.: Optimal control of a tuberculosis model with state and control delays. Math. Biosci. Eng. 14(1), 321–337 (2017)

    Article  MATH  MathSciNet  Google Scholar 

  16. Rodrigues, H.S., Monteiro, M.T.T., Torres, D.F.M.: Dynamics of dengue epidemics when using optimal control. Math. Comput. Model. 52(9–10), 1667–1673 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  17. Rodrigues, H.S., Monteiro, M.T.T., Torres, D.F.M.: Vaccination models and optimal control strategies to dengue. Math. Biosci. 247, 1–12 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  18. Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., Mishchenko, E.F.: The Mathematical Theory of Optimal Processes. Interscience, English translation (1962)

  19. Mangasarian, O.L.: Sufficient conditions for the optimal control of nonlinear systems. SIAM. J. on Control. 4(1), 139–152 (1965)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

Work partially supported by the project “Metodi numerici in teoria delle popolazioni” of the Dipartimento di Matematica “Giuseppe Peano” of the Università di Torino.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ezio Venturino.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cecchetti, A., Ferragamo, P., Zampini, A. et al. Optimal Control of an Ecogenetic Model. Int. J. Appl. Comput. Math 3 (Suppl 1), 473–488 (2017). https://doi.org/10.1007/s40819-017-0365-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40819-017-0365-x

Keywords

Navigation