Skip to main content
Log in

Modeling of Elastic Waves in a Fluid Loaded and Immersed Piezoelectric Hollow Fiber

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

Modeling of elastic waves in an infinite fluid-loaded and immersed homogeneous, transversely isotropic piezoelectric circular fiber is studied using linear elasticity theory. The equations of motion of the fiber are formulated using the constitutive equations of a transversely isotropic piezoelectric material. The equations of motion of the internal and external fluids are formulated using the constitutive equations of an inviscid fluid. Displacement potentials are used to solve the equations of motion of the fiber and the fluids. The frequency equation of the coupled system consisting of the fiber and the internal and external fluid is developed under the assumption of no-slip boundary condition at the fluid–solid interface. The computed non-dimensional frequencies, non-dimensional wave number, phase velocity, attenuation and electro mechanical coupling are plotted in the form of dispersion curves for the lead zirconate titanate (PZT-4) ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Meeker, T.R., Meitzler, A.H.: Guided wave propagation in elonged cylinders and plates. In: Mason, W.P. (ed.) Physical Acoustics, vol. 1. Academic, New York (1964)

    Google Scholar 

  2. Morse, R.W.: Compressional waves along an anisotropic circular cylinder having hexagonal symmetry. J. Acoust. Soc. Am. 26, 1018–1021 (1954)

    Article  MathSciNet  Google Scholar 

  3. Mirsky, I.: Wave propagation in transversely isotropic circular cylinders, part I: theory, part II: numerical results. J. Acoust. Soc. Am. 37, 1016–1026 (1965)

    Article  MathSciNet  Google Scholar 

  4. Saadatfar, M.: Effect of multiphysics conditions on the behavior of an exponentially graded smart cylindrical shell with imperfect bonding. Meccanica 50(8), 2135–2152 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  5. Saadatfar, M., Aghaie-Khafri, M.: On the behavior of a rotating functionally graded hybrid cylindrical shell with imperfect bonding subjected to hygrothermal condition. J. Therm. Stresses. 38(8), 854–881 (2015)

    Article  Google Scholar 

  6. Tiersten, H.F.: Linear Piezoelectric Plate Vibrations. Plenum, New York (1969)

    Book  Google Scholar 

  7. Parton, V.Z., Kudryavtsev, B.A.: Electromagnetoelasticity. Gordon and Breach, New York (1988)

    Google Scholar 

  8. Shul’ga, N.A.: Propagation of harmonic waves in anisotropic piezoelectric cylinders. Homogeneous piezoceramic wave guides. Int. Appl. Mech. 38(8), 933–953 (2002)

    Article  Google Scholar 

  9. Saadatfar, M., Aghaie-Khafri, M.: Electromagnetothermoelastic behavior of a rotating imperfect hybrid functionally graded hollow cylinder. Smart Struct. Syst. 15(6), 1411–1437 (2015)

    Article  Google Scholar 

  10. Saadatfar, M., Aghaie-Khafri, M.: Thermoelastic analysis of a rotating functionally graded cylindrical shell with functionally graded sensor and actuator layers on an elastic foundation placed in a constant magnetic field. J. Intell. Mater. Syst. Struct. 27(4), 512–527 (2016)

    Article  Google Scholar 

  11. Paul, H.S., Venkatesan, M.: Wave propagation in a piezoelectric ceramic cylinder of arbitrary cross section. J. Acoust. Soc. Am. 82(6), 2010–2013 (1987)

    Article  Google Scholar 

  12. Paul, H.S., Venkatesan, M.: Wave propagation in a piezoelectric ceramic cylinder of arbitrary cross section with a circular cylindrical cavity. J. Acoust. Soc. Am. 85(1), 163–170 (1989)

    Article  Google Scholar 

  13. Nagaya, K.: Dispersion of elastic waves in bars with polygonal cross-section. J. Acoust. Soc. Am. 70, 763–770 (1981)

    Article  MATH  Google Scholar 

  14. Rajapakse, R.K.N.D., Zhou, Y.: Stress analysis of piezoceramic cylinders. Smart Mater. Struct. 6, 169–177 (1997)

    Article  Google Scholar 

  15. Wang, Q.: Axi-symmetric wave propagation in cylinder coated with a piezoelectric layer. Int. J. Solids Struct. 39, 3023–3037 (2002)

    Article  MATH  Google Scholar 

  16. Ebenezer, D.D., Ramesh, R.: Analysis of axially polarized piezoelectric cylinders with arbitrary boundary conditions on the flat surfaces. J. Acoust. Soc. Am. 113(4), 1900–1908 (2003)

    Article  Google Scholar 

  17. Berg, M., Hagedorn, P., Gutschmidt, S.: On the dynamics of piezoelectric cylindrical shell. J. Sound Vib. 274, 91–109 (2004)

    Article  Google Scholar 

  18. Botta, F., Cerri, G.: Wave propagation in Reissner–Mindlin piezoelectric coupled cylinder with non-constant electric field through the thickness. Int. J. Solids Struct. 44, 6201–6219 (2007)

    Article  MATH  Google Scholar 

  19. Kim, J.O., Lee, J.G.: Dynamic characteristics of piezoelectric cylindrical transducers with radial polarization. J. Sound Vib. 300, 241–249 (2007)

    Article  Google Scholar 

  20. Graff, K.F.: Wave Motion in Elastic Solids. Dover, New York (1991)

    MATH  Google Scholar 

  21. Achenbach, J.D.: Wave Motion in Elastic Solids. Dover, New York (1973)

    MATH  Google Scholar 

  22. Yas, M.H., Aragh, B.S.: Free vibration analysis of continuous grading fiber reinforced plates on elastic foundation. Int. J. Eng. Sci. 48(12), 1881–1895 (2010)

    Article  MATH  Google Scholar 

  23. Reyes, V.G., Cantwell, W.J.: The mechanical properties of fiber-metal laminates based on glass fiber reinforced polypropylene. Composite. Sci. Tech. 60(7), 1085–1094 (2000)

    Article  Google Scholar 

  24. Sinha, K., Plona, J., Kostek, S., Chang, S.: Axisymmetric wave propagation in a fluid-loaded cylindrical shells, I: theory; II: theory versus experiment. J. Acoust. Soc. Am. 92, 1132–1155 (1992)

    Article  Google Scholar 

  25. Berliner, J., Solecki, R.: Wave propagation in a fluid-loaded, transversely isotropic cylinders, part I analytical formulation; part II numerical results. J. Acoust. Soc. Am. 99, 1841–1853 (1996)

    Article  Google Scholar 

  26. Dayal, V.: Longitudinal waves in homogeneous anisotropic cylindrical bars immersed in fluid. J. Acoust. Soc. Am. 93, 1249–1255 (1993)

    Article  Google Scholar 

  27. Nagy, B.: Longitudinal guided wave propagation in a transversely isotropic rod immersed in fluid. J. Acoust. Soc. Am. 98(1), 454–457 (1995)

    Article  MathSciNet  Google Scholar 

  28. Shanker, B., Nath, C.N., Shah, S.A., Reddy, P.M.: Vibrations in a fluid-loaded poroelastic hollow cylinder surrounded by a fluid in plane-strain form. I. J. Appl. Mech. Eng. 18(1), 189–216 (2013)

    Google Scholar 

  29. Ahmed, F.: Guided waves in a transversely isotropic cylinder immersed in fluid. J. Acoust. Soc. 109(3), 886–890 (2001)

    Article  Google Scholar 

  30. Ponnusamy, P., Selvamani, R.: Wave propagation in magneto thermo elastic cylindrical panel. Euro. J. Mech. A Solids 39, 76–85 (2013)

  31. Ponnusamy, P., Selvamani, R.: Wave propagation in a transversely isotropic magneto-electro-elastic solid bar immersed in an inviscid fluid. J. Egypt. Math. Soc. 24, 92–99 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  32. Paul, H.S., Raju, D.P.: Asymptotic analysis of the modes of wave propagation in a piezoelectric solid cylinder. J. Acoust. Soc. Am. 71(2), 255–263 (1982)

    Article  MATH  Google Scholar 

  33. Berlincourt, D.A., Curran, D.R., Jaffe, H.: Piezoelectric and Piezomagnetic Materials and their Function in Transducers. Academic Press, New York (1964)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Selvamani.

Appendix

Appendix

$$\begin{aligned} m_{1i}= & {} 2\overline{c} _{66} \left\{ {n\left( n-1 \right) -\overline{c} _{11} \left( \alpha _i a \right) ^{2}-\varsigma \left( \overline{c} _{13} a_i +\overline{e} _{31} b_i \right) } \right\} J_n \left( \alpha _i a \right) \nonumber \\&+\,2\overline{c} _{66} \left( \alpha _i a \right) J_{n+1} \left( \alpha _i a \right) ,\quad i=1,2,3 \end{aligned}$$
(30)
$$\begin{aligned} m_{14}= & {} 2\overline{c} _{66} n\left\{ {\left( n-1 \right) J_n \left( \alpha _4 a \right) -\left( \alpha _4 a \right) J_{n+1} \left( \alpha _4 a \right) } \right\} \end{aligned}$$
(31)
$$\begin{aligned} m_{15}= & {} 2\overline{c} _{66} n\left\{ {\left( n-1 \right) Y_n \left( \alpha _4 a \right) -\left( \alpha _4 a \right) Y_{n+1} \left( \alpha _4 a \right) } \right\} \end{aligned}$$
(32)
$$\begin{aligned} m_{1i}= & {} 2\overline{c} _{66} \left\{ {n\left( n-1 \right) -\overline{c} _{11} \left( \alpha _i a \right) ^{2}-\varsigma \left( \overline{c} _{13} a_i +\overline{e} _{31} b_i \right) } \right\} Y_n \left( \alpha _i a \right) \nonumber \\&+\,2\overline{c} _{66} \left( \alpha _i a \right) Y_{n+1} \left( \alpha _i a \right) ,\quad i=6,7,8 \end{aligned}$$
(33)
$$\begin{aligned} m_{19}= & {} \overline{\rho }_1 \Omega ^{2}J_n \left( \alpha _5 a \right) \end{aligned}$$
(34)
$$\begin{aligned} m_{10}= & {} \overline{\rho }_2 \Omega ^{2}H_n^{(2)} \left( \alpha _6 a \right) \end{aligned}$$
(35)
$$\begin{aligned} m_{2i}= & {} 2n\left\{ {\left( n-1 \right) J_n \left( \alpha _i a \right) +\left( \alpha _i a \right) J_{n+1} \left( \alpha _i a \right) } \right\} ,\quad i=1,2,3 \end{aligned}$$
(36)
$$\begin{aligned} m_{24}= & {} \left\{ {\left[ \left( \alpha _4 a \right) ^{2}-2n\left( n-1 \right) \right] J_n \left( \alpha _4 a \right) -2\left( \alpha _4 a \right) J_{n+1} \left( \alpha _4 a \right) } \right\} \end{aligned}$$
(37)
$$\begin{aligned} m_{25}= & {} \left\{ {\left[ \left( \alpha _4 a \right) ^{2}-2n\left( n-1 \right) \right] Y_n \left( \alpha _4 a \right) -2\left( \alpha _4 a \right) Y_{n+1} \left( \alpha _4 a \right) } \right\} \end{aligned}$$
(38)
$$\begin{aligned} m_{2i}= & {} 2n\left\{ {\left( n-1 \right) Y_n \left( \alpha _i a \right) +\left( \alpha _i a \right) Y_{n+1} \left( \alpha _i a \right) } \right\} ,\quad i=6,7,8 \end{aligned}$$
(39)
$$\begin{aligned} m_{29}= & {} 0, m_{210} =0 \end{aligned}$$
(40)
$$\begin{aligned} m_{3i}= & {} \left( \left( \varsigma +a_i \right) +\overline{e} _{15} b_i \right) \left\{ {nJ_n \left( \alpha _i a \right) -\left( \alpha _i a \right) J_{n+1} \left( \alpha _i a \right) } \right\} ,\quad i=1,2,3 \end{aligned}$$
(41)
$$\begin{aligned} m_{34}= & {} n\varsigma J_n \left( \alpha _4 a \right) \end{aligned}$$
(42)
$$\begin{aligned} m_{35}= & {} n\varsigma Y_n \left( \alpha _4 a \right) \end{aligned}$$
(43)
$$\begin{aligned} m_{3i}= & {} \left( \left( \varsigma +a_i \right) +\overline{e} _{15} b_i \right) \left\{ {nJ_n \left( \alpha _i a \right) -\left( \alpha _i a \right) J_{n+1} \left( \alpha _i a \right) } \right\} ,\quad i=6,7,8 \end{aligned}$$
(44)
$$\begin{aligned} m_{39}= & {} 0, m_{310} =0, \end{aligned}$$
(45)
$$\begin{aligned} m_{4i}= & {} b_i J_n \left( \alpha _i a \right) ,\quad i=1,2,3 \end{aligned}$$
(46)
$$\begin{aligned} m_{44}= & {} 0,m_{45} =0 \end{aligned}$$
(47)
$$\begin{aligned} m_{4i}= & {} b_i Y_n \left( \alpha _i a \right) ,\quad i=6,7,8 \end{aligned}$$
(48)
$$\begin{aligned} m_{49}= & {} 0,m_{410} =0 \end{aligned}$$
(49)
$$\begin{aligned} m_{5i}= & {} \left\{ {nJ_n \left( \alpha _i a \right) -\left( \alpha _i a \right) J_{n+1} \left( \alpha _i a \right) } \right\} ,\quad i=1,2,3 \end{aligned}$$
(50)
$$\begin{aligned} m_{54}= & {} nJ_n \left( \alpha _4 a \right) \end{aligned}$$
(51)
$$\begin{aligned} m_{55}= & {} nY_n \left( \alpha _4 a \right) \end{aligned}$$
(52)
$$\begin{aligned} m_{5i}= & {} \left\{ {nY_n \left( \alpha _i a \right) -\left( \alpha _i a \right) Y_{n+1} \left( \alpha _i a \right) } \right\} ,\quad i=6,7,8 \end{aligned}$$
(53)
$$\begin{aligned} m_{59}= & {} \Omega ^{2}\overline{\rho }_1 \left\{ {nJ_n \left( \alpha _5 a \right) -\left( \alpha _5 a \right) J_{n+1} \left( \alpha _5 a \right) } \right\} \end{aligned}$$
(54)
$$\begin{aligned} m_{510}= & {} \Omega ^{2}\overline{\rho }_2 \left\{ {nH_n^{(2)} \left( \alpha _6 a \right) -\left( \alpha _6 a \right) H_{n+1}^{(2)} \left( \alpha _6 a \right) } \right\} \end{aligned}$$
(55)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selvamani, R. Modeling of Elastic Waves in a Fluid Loaded and Immersed Piezoelectric Hollow Fiber. Int. J. Appl. Comput. Math 3, 3263–3277 (2017). https://doi.org/10.1007/s40819-016-0292-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40819-016-0292-2

Keywords

Navigation