Skip to main content
Log in

Interface Crack at Orthotropic Media

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

This paper deals with the diffraction of SH-waves by a Griffith crack located at the interface of two bonded dissimilar orthotropic half spaces. The mixed boundary value problem has been reduced to the solution of Fredholm integral equation of second kind by applying Fourier and Abel transforms. Stress intensity factor at the tip of the crack has been calculated by solving integral equation using perturbation method for low frequency and plotted against dimensionless frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Srivastava, K.N., Palaiya, R.M., Karaulia, D.S.: Interaction of antiplane shear waves by a Griffith crack at the interface of two bonded dissimilar elastic half spaces. Int. J. Fract. 16, 349–358 (1980)

    Article  Google Scholar 

  2. Srivastava, K.N., Palaiya, R.M., Karaulia, D.S.: Interaction of shear waves with a Griffith crack situated in an infinitely long elastic strip. Int. J. Fract. 21, 39–48 (1981)

    Article  Google Scholar 

  3. De, J., Patra, B.: Edge crack in orthotropic elastic half-plane. Ind. J. Pure Appl. Math. 20(9), 923–930 (1989)

    MATH  Google Scholar 

  4. Mandal, S.C., Ghosh, M.L.: Interaction of elastic waves with a periodic array of coplanar Griffith cracks in an orthotropic medium. Int. J. Eng. Sci. 32(1), 167–178 (1994)

    Article  MATH  Google Scholar 

  5. Sarkar, J., Mandal, S.C., Ghosh, M.L.: Diffraction of elastic waves by three coplaner Griffith cracks in an orthotropic medium. Int. J. Eng. Sci. 33(2), 163–177 (1995)

    Article  MATH  Google Scholar 

  6. Das, S., Patra, B., Debnath, L.: Stress intensity factors for an interfacial crack between an orthotropic half-plane bonded to a dissimilar orthotropic layer with a punch. Comput. Math. Appl. 35(12), 27–40 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  7. Das, S., Patra, B., Debnath, L.: Diffraction of SH-waves by a Griffith crack in an infinite transversly ortotropic medium. Appl. Math. Lett. 12, 57–61 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  8. Das, S., Chakraborty, S., Srikanth, N., Gupta, M.: Symmetric edge cracks in an orthotropic strip under normal loading. Int. J. Fract. 153(1), 77–84 (2008)

    Article  MATH  Google Scholar 

  9. Li, X.-F.: Two perfectly-bonded dissimilar orthotropic strips with an interfacial crack normal to the boundaries. Appl. Math. Comput. 163, 961–975 (2005)

    MATH  MathSciNet  Google Scholar 

  10. Sinharoy, S.: Elastostatic problem of an infinite row of parallel cracks in an orthotropic medium under general loading. Int. J. Phys. Math. Sci. 3(1), 96–108 (2013)

    Google Scholar 

  11. Monfared, M.M., Ayatollahi, M.: Dynamic stress intensity factors of multiple cracks in an orthotropic strip with FGM coating. Eng. Fract. Mech. 109, 45–57 (2013)

    Article  Google Scholar 

  12. Mukherjee, S., Das, S.: Interaction of three interfacial Griffith cracks between bonded dissimilar orthotropic half planes. Int. J. Solids Struct. 44, 5437–5446 (2007)

    Article  MATH  Google Scholar 

  13. Das, S., Mukhopadhyay, S., Prasad, R.: Stress intensity factor of an edge crack in bonded orthotropic materials. Int. J. Fract. 168(1), 117–123 (2011)

    Article  MATH  Google Scholar 

  14. Itou, S.: Stress intensity factors for two parallel interface cracks between a nonhomogenious bonding layerand two dissimilar ortotropic half planes under tension. Int. J. Fract. 175, 187–192 (2012)

    Article  Google Scholar 

  15. Itou, S.: Difrraction of an antiplane shear wave by two coplanar Griffith cracks in an infinite elastic medium. Int. J. Solids Struct. 16, 1147–1153 (1980)

    Article  MATH  Google Scholar 

  16. Basak, P., Mandal, S.C.: P-wave interaction by an asymmetric crack in an orthotropic strip. Int. J. Appl. Comput. Math. 1, 157–170 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  17. Ding, S.H., Li, X.: The collinear crack problem for an orthotropic functionally graded coating–substrate structure. Arch. Appl. Mech. 84, 291–307 (2014)

    Article  MATH  Google Scholar 

  18. Garg, A.C.: Stress distribution near periodic cracks at the interface of two bonded dissimilar orthotropic half planes. Int. J. Eng. Sci. 19, 1101–1114 (1981)

    Article  MATH  Google Scholar 

  19. Satapathy, P.K., Parhi, H.: Stresses in an orthotropic strip containing a Griffith crack. Int. J. Eng. Sci. 16, 147–154 (1978)

    Article  MATH  Google Scholar 

  20. Marin, M.: A temporally evolutionary equation in elasticity of micropolar bodies with voids. Appl. Math. Phys. 1, 67–78 (1996)

    Google Scholar 

  21. Marin, M.: An evolutionary equation in thermoelasticity of dipolar bodies. J. Math. Phys. 40, 1391–1399 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  22. Marin, M.: On existence and uniqueness in thermoelasticity in micropolar bodies. C. R. Acad. Sci. Ser. II B Mech. Phys. Chem. Astron. 321, 475–480 (1995)

    MATH  Google Scholar 

  23. Zhang, Y.F., Chen, S.M.: A coupled fixed point theorem in partially ordered metric spaces and applications to integral equations. Nonlinear Sci. Lett. A 8(1), 60–65 (2017)

    Google Scholar 

  24. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1965)

    MATH  Google Scholar 

  25. Masmoudi, M., Castaings, M.: Three-dimensional hybrid model for predicting air-coupled generation of guided waves in composite material plates. Ultrasonics 52(1), 81–92 (2012)

  26. Castaings, M., Hosten, B.: Lamb and SH waves generated and detected by air-coupled ultrasonic transducers in composite material plates. NDT & E Int. 34, 249–258 (2001)

  27. Yu, J.G., Ratolojanahary, F.E., Lefebvre, J.E.: Guided waves in functionally graded viscoelastic plates. Compos. Struct. 93, 2671–2677 (2011)

Download references

Acknowledgements

This research work is financially supported by The University Grant Commission Rajiv Gandhi National Fellowship (UGC RGNF), New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Palas Mandal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, P., Mandal, S.C. Interface Crack at Orthotropic Media. Int. J. Appl. Comput. Math 3, 3253–3262 (2017). https://doi.org/10.1007/s40819-016-0290-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40819-016-0290-4

Keywords

Navigation