Skip to main content
Log in

Discussion on Proportional Harvesting Model in Fuzzy Environment: Fuzzy Differential Equation Approach

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

Having much attention in the past few years, uncertainty (fuzzy, interval etc.,) play important role in mathematical biology. In this paper we study a proportional harvesting model in fuzzy environment. The model is considered in three different way: initial population density as a fuzzy number, intrinsic growth rate and proportional harvesting are fuzzy number and initial population density, intrinsic growth rate, proportional harvesting are fuzzy number. The solution procedure is done by the concept of fuzzy differential equation. This paper explores the stability analysis of a bio mathematical model in fuzzy environment. We have discussed about equilibrium points and their feasibility. The necessary numerical result is done and discuss briefly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Lotka, A.J.: Elements of Physical Biology. The Williams and Wilkins Co., Baltimore (1925)

    MATH  Google Scholar 

  2. Volterra, V.: Variazioni e fluttuazioni del numers di individuiin specie animali conviventi. Mem. Accd. Lineii Roma 2, 31–113 (1926)

    MATH  Google Scholar 

  3. Malthus, T.R.: An essay on the principle of population, as it affects the future improvement of society, with remarks on the speculations of Mr. Godwin, M. Condorcet and other writers. J. Johnson, London, 1798. Reprint, University of Michigan Press, USA (1959)

  4. Verhulst, P.F.: Notice sur la loi que la population persuit dans son accroissement. Corr. Math. Phys. 10, 113–121 (1838)

    Google Scholar 

  5. Murray, J.: Mathematical Biology. Springer, Berlin (1990)

    MATH  Google Scholar 

  6. Zadeh, L.: Toward a generalized theory of uncertainty (GTU)—an outline. Inf. Sci. 172, 1–40 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chang, S.L., Zadeh, L.A.: On fuzzy mapping and control. IEEE Trans. Syst. Man Cybern. 2, 30–34 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  8. Dubois, D., Prade, H.: Towards fuzzy differential calculus: part 3. Differ. Fuzzy Sets Syst. 8, 225–233 (1982)

    Article  MATH  Google Scholar 

  9. Puri, M.L., Ralescu, D.A.: Differentials of fuzzy functions. J. Math. Anal. Appl. 91, 552–558 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  10. Goetschel, R., Voxman, W.: Elementary fuzzy calculus. Fuzzy Sets Syst. 18, 31–43 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  11. Kaleva, O.: Fuzzy differential equations. Fuzzy Sets Syst. 24, 301–317 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  12. Bede, B., Gal, S.G.: Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations. Fuzzy Sets Syst. 151, 581–599 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Diamond, P., Kloeden, P.: Metric Spaces of Fuzzy Sets. World Scientific, Singapore (1994)

    MATH  Google Scholar 

  14. Bede, B.: A note on “two-point boundary value problems associated with non-linear fuzzy differential equations”. Fuzzy Sets Syst. 157, 986–989 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  15. Chalco-Cano, Y., Román-Flores, H.: On the new solution of fuzzy differential equations. Chaos Solitons Fract. 38, 112–119 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  16. Bede, B., Rudas, I.J., Bencsik, A.L.: First order linear fuzzy differential equations under generalized differentiability. Inf. Sci. 177, 1648–1662 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  17. Chalco-Cano, Y., Rojas-Medar, M.A., Román-Flores, H.: Sobre ecuaciones diferencial esdifusas. Bol. Soc. Esp. Mat. Apl. 41, 91–99 (2007)

    Google Scholar 

  18. Chalco-Cano, Y., Román-Flores, H., Rojas-Medar, M.A.: Fuzzy differential equations with generalized derivative. In: Proceedings of the 27th North American Fuzzy Information Processing Society International Conference. IEEE (2008)

  19. Stefanini, L., Bede, B.: Generalized Hukuhara differentiability of interval-valued functions and interval differential equations. Nonlinear Anal. 71, 1311–1328 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  20. Khastan, A., Nieto, J.J.: A boundary value problem for second-order fuzzy differential equations. Nonlinear Anal. 72, 3583–3593 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  21. Bede, B., Gal, S.G.: Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations. Fuzzy Set Syst. 151, 581–599 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  22. Stefanini, L.: A generalization of Hukuhara difference for interval and fuzzy arithmetic. In: Dubois, D., Lubiano, M.A., Prade, H., Gil, M. A., Grzegorzewski, P., Hryniewicz, O. (eds.) Soft Methods for Handling Variability and Imprecision. In: Series on Advances in Soft Computing, vol. 48 (2008)

  23. Stefanini, L., Bede, B.: Generalized Hukuhara differentiability of interval-valued functions and interval differential equations. Nonlinear Anal. 71, 1311–1328 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  24. Allahviranloo, T., Abbasbandy, S., Salahshour, S., Hakimzadeh, A.: A new method for solving fuzzy linear differential equations. Computing 92, 181–197 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  25. Chen, M., Wu, C., Xue, X., Liu, G.: On fuzzy boundary value problems. Inf. Sci. 178, 1877–1892 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  26. O’Regan, D., Lakshmikantham, V., Nieto, J.: Initial and boundary value problems for fuzzy differential equations. Nonlinear Anal. 54, 405–415 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  27. Buckley, J.J., Feuring, T.: Fuzzy differential equations. Fuzzy Sets Syst. 110, 43–54 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  28. Buckley, J.J., Feuring, T.: Fuzzy initial value problem for Nth-orderlinear differential equations. Fuzzy Sets Syst. 121, 247–255 (2001)

    Article  MATH  Google Scholar 

  29. Hüllermeier, E.: An approach to modeling and simulation of uncertain dynamical systems. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 5, 117–137 (1997)

    Article  MATH  Google Scholar 

  30. Allahviranloo, T., Barkhordari Ahmadi, M.: Fuzzy laplace transforms. Soft Comput. 14, 235–243 (2010)

    Article  MATH  Google Scholar 

  31. Ramazannia Tolouti, S.J., Barkhordary Ahmadi, M.: Fuzzy laplace transform on two order derivative and solving fuzzy two order differential equation. Int. J Ind. Math. 2(4), 279–293 (2010)

    Google Scholar 

  32. Mondal, S.P., Roy, T.K.: First order linear homogeneous fuzzy ordinary differential equation based on lagrange multiplier method. J. Soft Comput. Appl. 2013, 1–17 (2013)

    Google Scholar 

  33. Barros, L.C., Bassanezi, R.C., Tonelli, P.A.: Fuzzy modelling in population dynamics. Ecol. Model. 128, 27–33 (2000)

    Article  Google Scholar 

  34. Akın, O., Oruc, O.: A prey predator model with fuzzy initial values. Hacet. J. Math Stat. 41(3), 387–395 (2012)

    MATH  MathSciNet  Google Scholar 

  35. Zarei, H., Kamyad, A.V., Heydari, A.A.: Fuzzy modeling and control of HIV infection. Comput. Math. Methods Med. 2012, Article ID 893474

  36. Diniz, G.L., Fernandes, J.F.R., Meyer, J.F.C.A., Barros, L.C.: A fuzzy Cauchy problem modelling the decay of the biochemical oxygen demand in water, 0-7803-7078 3/01/$10.00 (C). IEEE (2001)

  37. Nounou, H.N., Nounou, M.N., Meskin, N., Datta, A., Dougherty, E.R.: Fuzzy intervention in biological phenomena. IEEE/ACM Trans. Comput. Biol. Bioinform. 9(6) (2012)

  38. Barzinji, K.: Fuzzy delay predator–prey system: existence theorem and oscillation property of solution. Int. J. Math. Anal. 8(17), 829–847 (2014)

    Article  MathSciNet  Google Scholar 

  39. Jafelice, R.M., Barros, L.C., Bassanezi, R.C., Gomide, F.: Fuzzy modeling in symptomatic HIV virus infected population. Bull. Math. Biol. 66, 1597–1620 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  40. Omar, A.H.A., Hasan, Y.A.: The interaction of predator prey with uncertain initial population sizes. J. Qual. Meas. Anal. 7(2), 75–83 (2011)

    Google Scholar 

  41. da Silva Peixoto, M., de Barros, L.C., Bassanezi, R.C.: Predator–prey fuzzy model. Ecol. Model. 214, 39–44 (2008)

    Article  Google Scholar 

  42. Ahmad, M.Z., Hasan, M.K.: Modeling of biological populations using fuzzy differential equations. International Conference Mathematical and Computational Biology 2011, International Journal of Modern Physics: Conference Series Vol. 9, pp. 354–363 (2012)

  43. Ahmad, M.Z., De Baets, B.: A predator–prey model with fuzzy initial populations. In: IFSA-EUSFLAT (2009)

  44. Najariyan, M., Farahi, M.H., Alavian, M.: Optimal control of HIV infection by using fuzzy dynamical systems. J. Math. Comput. Sci. 2(4), 639–649 (2011)

    Google Scholar 

  45. Maan, N., Barzinji, K., Aris, N.: Fuzzy delay differential equation in predator–prey interaction: analysis on stability of steady state. In: Proceedings of the World Congress on Engineering 2013 Vol I, WCE 2013, July 3–5, London, UK (2013)

  46. Pal, D., Mahapatra, G.S.: A bioeconomic modeling of two-prey and one-predator fishery model with optimal harvesting policy through hybridization approach. Appl. Math. Comput. 242, 748–763 (2014)

    MATH  MathSciNet  Google Scholar 

  47. Pal, D., Mahaptra, G.S., Samanta, G.P.: Optimal harvesting of prey–predator system with interval biological parameters: a bioeconomic model. Math. Biosci. 241, 181–187 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  48. Pal, D., Mahapatra, G.S., Samanta, G.P.: Bifurcation analysis of predator–prey model with time dalay and harvesting efforts using interval parameter. Int. J. Dyn. Control 3(3), 199–209 (2015)

    Article  MathSciNet  Google Scholar 

  49. Pal, D., Mahapatra, G.S., Samanta, G.P.: Dynamic behavior of a predator–prey system of combined harvesting with interval-valued rate parameters. Nonlinear Dyn. 83, 2113–2123 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  50. Pandit, P., Singh, P.: Prey–predator model with fuzzy initial conditions. Int. J. Eng. Innov. Technol. 3(12) (2014)

  51. Pal, D., Mahaptra, G. S., and Samanta, G. P.: Quota harvesting model for a single species population under fuzziness. IJMS 12(1–2), 33–46 (2013)

  52. Tapaswini, S., Chakraverty, S.: Numerical solution of fuzzy arbitrary order predator–prey equations. Appl. Appl. Math. 8(2), 647–672 (2013)

    MATH  MathSciNet  Google Scholar 

  53. Pal, D., Mahapatra, G.S., Samanta, G.P.: A proportional harvesting dynamical model with fuzzy intrinsic growth rate and harvesting quantity. Pac.-Asian J. Math. 6(2), 199–213 (2012)

    Google Scholar 

  54. Pal, D., Mahapatra, G.S., Samanta, G.P.: Stability and bionomic analysis of fuzzy parameter based prey–predator harvesting model using UFM. Nonlinear Dyn. 79, 1939–1955 (2015)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sankar Prasad Mondal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paul, S., Mondal, S.P. & Bhattacharya, P. Discussion on Proportional Harvesting Model in Fuzzy Environment: Fuzzy Differential Equation Approach. Int. J. Appl. Comput. Math 3, 3067–3090 (2017). https://doi.org/10.1007/s40819-016-0283-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40819-016-0283-3

Keywords

Navigation