Skip to main content
Log in

Influence of Non-linear Thermal Radiation on MHD Double-Diffusive Convection Heat and Mass Transfer of a Non-Newtonian Fluid in a Porous Medium

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

The present paper deals with the problem of steady, magnetohydrodynamic laminar double-diffusive convection heat and mass transfer of a micropolar fluid over a vertical permeable semi-infinite plate embedded in a uniform porous medium in the presence of non-linear thermal radiation. In addition, the present model allows the influence of heat generation/absorption and first-order chemical reaction. The governing equations are solved efficiently by Runge–Kutta–Fehlberg method with shooting technique. The effects of thermal buoyancy ratio, Schmidt number, chemical reaction parameter, heat generation/absorption and surface suction/injection on the fluid velocity, microrotation, temperature and solute concentration are analyzed. It is found that increase in the inverse Darcy number results in decrease in the velocity and microrotation distributions whereas reverse effects are seen on the temperature and concentration distributions. Also, it is observed that with increase in the magnetic parameter there is decrease in the velocity and microrotation gradient whereas reverse effects are noticed on the temperature and concentration distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

Abbreviations

A :

Constant for wall temperature and concentration

B :

Microrotation material constant \((B=\nu /(j(g\beta _T A)^{1/2}))\)

\(B_{0}\) :

Strength of applied magnetic field

C :

Concentration at any point in the flow field

\(C_{f}\) :

Local skin-friction coefficient defined by Eq. (25)

\(C_m\) :

Local mass transfer coefficient defined by Eq. (27)

\(c_{p}\) :

Specific heat at constant pressure

\(C_q\) :

Local heat transfer coefficient defined by Eq. (26)

\(C_r \) :

Local wall microrotation coefficient \((C_r=\xi C_r^{*})\)

\(C_w\) :

Concentration at the wall

\(C_\infty \) :

Concentration at free stream

D :

Mass diffusivity

d :

Mean particle diameter

\(Da^{*}\) :

Inverse Darcy number (\(Da^{*}\)=\(\nu /(K(g\beta _T A)^{1/2})\))

f :

Dimensionless stream function \((f=\psi /((g\beta _T A\nu ^{2})^{1/4}x))\)

\(f_0\) :

Dimensionless wall mass transfer coefficient \((f_0=-V_w/(g\beta _T A\nu ^{2})^{1/4})\)

g :

Gravitational acceleration

Gr :

Buoyancy ratio (\(Gr=\beta _C(C_w-C_\infty )/(\beta _T(T_w-T_\infty ))\))

j :

Microrotation per unit mass

K :

Permeability of the porous medium

k :

Dimensionless chemical reaction parameter \((k=R/(g\beta _T A)^{1/2})\)

\(K^{*}\) :

Vortex viscosity

M :

Magnetic parameter

N :

Angular velocity or microrotation

\(P_r\) :

Prandtl number \((P_r=\rho \nu c_p/\kappa _e)\)

\(Q_0\) :

Heat generation or absorption coefficient

\(q_r\) :

Heat flux \(q_{r}=-\frac{4\sigma ^{*}}{3k^{*}}\frac{\partial T^{4}}{\partial y}\)

R :

Chemical reaction parameter

\(R_d\) :

Radiation parameter

S :

Porous medium thermal dispersion parameter \((S{=}c_p \sigma d(g\beta _T A)^{1/2}/(g\beta _T \alpha ))\)

\(S^{*}\) :

Local porous medium thermal dispersion parameter \((S^{*}=S\xi )\)

\(S_c\) :

Schmidt number \((S_c=\nu /D)\)

T :

Temperature at any point

\(T_w\) :

Wall temperature

\(T_\infty \) :

Free stream temperature

u :

Tangential or x-component of the Darcian velocity

v :

Normal or y-component of the Darcian velocity

\(V_w\) :

Dimensional wall mass transfer

x :

Distance along the plate

y :

Distance normal to the plate

\(\alpha \) :

Molecular thermal diffusivity

\(\alpha _e\) :

Effective thermal diffusivity of the porous medium

\(\alpha _d\) :

Thermal diffusivity of the porous medium due to thermal dispersion

\(\beta _C\) :

Concentration expansion coefficient

\(\beta _T\) :

Thermal expansion coefficient

\(\Delta \) :

Microrotation material parameter \((\Delta =K^{*}/(\rho \nu )\))

\(\delta \) :

Dimensionless heat generation or absorption parameter \((\delta =Q_0/(\rho c_p(g\beta _T A)^{1/2}))\)

\(\epsilon \) :

Porosity

\(\phi \) :

Dimensionless concentration \((\phi =(C-C_\infty )/(C_w-C_\infty ))\)

\(\gamma \) :

Spin gradient viscosity

\(\eta \) :

Dimensionless distance normal to the plate, \((\eta =(g\beta _T A/\nu ^{2})^{1/4}y)\)

\(\kappa _e\) :

Porous medium effective thermal conductivity

\(\lambda \) :

Microrotation material constant \((\lambda =\gamma /(\rho \nu j))\)

\(\nu \) :

Fluid kinematic viscosity

\(\psi \) :

Stream function

\(\theta \) :

Dimensionless temperature \((\theta =(T-T_\infty )/(T_w-T_\infty ))\)

\(\theta _w\) :

Temperature ratio

\(\rho \) :

Fluid density

\(\sigma \) :

Thermal dispersion constant

\(\xi \) :

Dimensionless distance along the plate \((\xi =g\beta _T x/c_p)\)

\(\omega \) :

Dimensionless microrotation \((\omega =N/(g\beta _T A/\nu ^{2/3})^{3/4})\)

References

  1. Bejan, A.: Convection Heat Transfer. Willey, New York (1984)

    MATH  Google Scholar 

  2. Lai, F.C.: Coupled heat and mass transfer by mixed convection from a vertical plate in a saturated porous medium. Int. Commun. Heat Mass Transf. 18, 93–106 (1991)

    Article  Google Scholar 

  3. Raptis, A., Tzivanidis, G., Kafousias, N.: Free convection and mass transfer flow through a porous medium bounded by infinite vertical limiting surface with constant suction. Lett. Heat Mass Transf. 8, 417–424 (1981)

    Article  Google Scholar 

  4. Pal, D., Chatterjee, S.: Heat and mass transfer in MHD non-Darcian flow of a micropolar fluid over a stretching sheet embedded in a porous media with non-uniform heat source and thermal radiation. Commun. Nonlinear Sci. Numer. Simul. 15, 1843–1857 (2010)

    Article  MATH  Google Scholar 

  5. Cheng, P., Minkowycz, W.J.: Free convection about a vertical flat plate embedded in a porous medium with application to heat transfer from a dike. J. Geophys. 82, 2040–2044 (1977)

    Article  Google Scholar 

  6. Cheng, P.: Heat transfer in geothermal system. Adv. Heat Transf. 4, 1–105 (1978)

    Google Scholar 

  7. Kim, S.J., Vafai, K.: Analysis of natural convection about a vertical plate embedded in a porous medium. Int. J. Heat Mass Transf. 32, 665–677 (1989)

    Article  MATH  Google Scholar 

  8. Hong, J., Yamada, Y., Tien, C.L.: Effect of non-Darcian and non-uniform porosity on vertical plate natural convection in porous media. J. Heat Transf. 109, 356–362 (1987)

  9. Nield, D.A., Bjan, A.: Convection in Porous Media. Springer, New York (1992)

    Book  Google Scholar 

  10. Bourne, D.E., Dixon, J.: The cooling of fibres in the formation process. Int. J. Heat Transf. 14, 132332 (1971)

    Article  Google Scholar 

  11. Ishak, A., Nazar, R., Pop, I.: Heat transfer over a stretching surface with variable surface heat flux in micropolar fluids. Phys. Lett. A 372, 55961 (2008)

    MATH  Google Scholar 

  12. Eringen, A.C.: Theory of micropolar fluids. J. Math. Mech. 16, 1–18 (1966)

    MathSciNet  Google Scholar 

  13. Peddieson, J., McNitt, R.P.: Boundary layer theory for miceopolar fluids. Recent Adv. Eng. Sci. 5, 405–426 (1970)

    Google Scholar 

  14. Gorla, R.S.R.: Heat Transfer in micropolar boundary layer flow over a flat plate. Int. J. Eng. Sci. 21, 791–796 (1983)

    Article  Google Scholar 

  15. Rees, D.A.S., Bassom, A.P.: The Blassius boundary layer flow of a micropolar fluid. Int. J. Eng. Sci. 34, 113–124 (1996)

    Article  MATH  Google Scholar 

  16. Hady, F.M.: On the heat transfer to micropolar fluid from a non isothermal stretchig sheet with injection. Int. J. Numer. Methods Heat Fluid Flow 6, 99–104 (1996)

    Article  MATH  Google Scholar 

  17. Kelson, N.A., Desseaux, A.: Effects of surface conditions on flow of a micropolar fluiddriven by a porous stretchig sheet. Int. J. Eng. Sci. 39, 1881–1897 (2001)

    Article  Google Scholar 

  18. Pal, D., Chatterjee, S.: Mixed convection magnetohydrodynamic heat and mass transfer past a stretching surface in a micropolar fluid-saturated porous medium under the influence of Ohmic heating, Soret and Dufour effects. Commun. Nonlinear Sci. Numer. Simul. 16, 1329–1346 (2011)

    Article  MATH  Google Scholar 

  19. Sharma, R.C., Gupta, U.: Thermal convection in micropolar fluids in porous medium. Int. J. Eng. Sci. 33, 1887–1892 (1995)

    Article  MATH  Google Scholar 

  20. El-Hakiem, M.A.: Effect of transverse magnetic field on natural convection in boundary layer flow field of mocropolar fluids in a porous medium. Appl. Mech. Eng. Pol. 4, 508–509 (1999)

    MATH  Google Scholar 

  21. Siddheshwar, P.G., Sri Krishna, C.V.: Linear and non-linear analyses of convection in a micropolar fluid occupying a porous medium. Int. J. Non-Linear Mech. 38, 1561–1579 (2003)

    Article  MATH  Google Scholar 

  22. Kelson, N.A., Farrel, T.W.: Micropolar flow over a porous stretching sheet with strong suction or injection. Int. Commun. Heat Mass Transf. 28, 479–488 (2001)

    Article  Google Scholar 

  23. Bhargava, R., Kumar, L., Takhar, H.S.: Finite element solution of mixed convection micropolar flow driven by a porous stretching sheet. Int. J. Eng. Sci. 41, 2161–2178 (2003)

    Article  MATH  Google Scholar 

  24. Mahmoud, M.A.A., Abd-Elaty, M.M., Waheed, S.E.: Hydromagnetic boundary layer micropolar fluid flow over a stretching surface embedded in a non Darcian porous medium with radiation. Math. Prob. Eng. 2006, 1-10, Art ID 39392 (2006). doi:10.1155/MPE/2006/39392

  25. Ibrahim, F.S., Hady, F.M.: Mixed convectionradiation interaction in boundary layer flow over a horizontal surface. Astrophys. Space Sci. 168, 263–276 (1990)

  26. Hossain, M.A., Takhar, H.S.: Radiation effect on mixed convection along a vertical plate with uniform surface temperature. Heat Mass Transf. 31, 243–248 (1996)

  27. Vajravelu, K.: Flow and heat transfer in a saturated porous medium. ZAMM 74, 605–614 (1994)

    Article  MATH  Google Scholar 

  28. Plumb, O.A., Huenfeld, J.S., Eschbach, E.J.: The effect of crossflow and radiation on natural convection from vertical heated surfaces in saturated porous media. In: AIAA 16th Thermophysics Conference, 2325/Palo Alto, CA (1981)

  29. Raptis, A.: Radiation and viscoelastic flow. Int. Commun. Heat Mass Transf. 26(6), 889–895 (1999)

    Article  Google Scholar 

  30. Bakier, A.Y., Gorla, R.S.R.: Thermal radiation effect on mixed convection from horizontal surfaces in saturated porous media. Transp. Porous Media 23, 357–363 (1996)

    Article  Google Scholar 

  31. Chamkha, A.J.: Solar radiation assisted convection in uniform porous medium supported by a vertical flat plate. Trans. ASME J. Heat Transf. 119, 89–96 (1997)

    Article  Google Scholar 

  32. Chamkha, A.J., Khanafer, K.: Nonsimilar combined convection flow over a vertical surface embedded in a variable porosity medium. J. Porous Media 2(3), 23149 (1999)

    Article  MATH  Google Scholar 

  33. Mohammadein, A.A., El-Amin, M.F.: Thermal dispersion–radiation effects on non-Darcy natural convection in a fluid saturated porous medium. Transp. Porous Medium 40(2), 15363 (2000)

    Google Scholar 

  34. El-Hakiem, M.A., El-Amin, M.F.: Thermal radiation effects on non-Darcy natural convection with lateral mass flux. Heat Mass Transf. 37, 1615 (2001)

    Google Scholar 

  35. Pal, D., Chatterjee, S.: Mixed convection magnetohydrodynamic heat and mass transfer past a stretching surface in a micropolar fluid-saturated porous medium under the influence of Ohmic heating, Soret and Dufour effects. Commun. Nonlinear Sci. Numer. Simul. 16, 1329–1346 (2011)

    Article  MATH  Google Scholar 

  36. Pal, D., Mondal, H.: Effect of variable viscosity on MHD non-Darcy mixed convective heat transfer over a stretching sheet embedded in a porous medium with non-uniform heat source/sink. Commun. Nonlinear Sci. Numer. Simul. 15, 1553–1564 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  37. Cookey, C.I., Omub-Pepple, V.B., Ogulu, A.: Influence of viscous dissipation and radiation on unsteady MHD free convection flow past an infinite heated vertical plate in a porous medium with time-dependent suction. Int. J. Heat Mass Transf. 46, 2305–2311 (2003)

    Article  MATH  Google Scholar 

  38. Vajravelu, K., Rollins, D.: Heat transfer in electrically conducting fluid over a stretching sheet. Int. J. Non-linear Mech. 27(2), 265–277 (1992)

    Article  MATH  Google Scholar 

  39. Eldabe, N.T., Elchehawey, E.F., Elbarbary, E.M.F., Elgazary, N.S.: Chebyshev finite difference method for MHD flow of a micropolar fluid past a stretching sheet. Appl. Math. Comp. 160, 43750 (2005)

    Article  MathSciNet  Google Scholar 

  40. Abo-Eldahab, E.M., El-Gendy, M.S.: Radiation effect on convective heat transfer in an electrically conducting fluid at a stretching surface with variable viscosity and uniform free surface. Phys. Scr. 62, 321–325 (2000)

    Article  Google Scholar 

  41. Acharya, S., Goldstein, R.J.: Natural convection in an externally heated vertical or inclined square box containing internal energy source. ASME J. Heat Transf. 107, 855–866 (1985)

    Article  Google Scholar 

  42. Chamkha, A.J., Al-Mudhaf, A., Al-Yatma, J.: Double-diffusive convective flow of a micropolar fluid over a vertical plate embedded in a porous medium with a chemical reaction. Int. J. Fluid Mech. Res. 31, 6 (2004)

    Google Scholar 

  43. Rahaman, M., Mulolani, I.: Convective–diffusive transport with chemical reaction in natural convection flows. Theor. Comput. Fluid Dyn. 13, 291–304 (2000)

    Article  MATH  Google Scholar 

  44. Yagi, S., Kunii, D., Endo, K.: Porous medium heat transfer. Int. J. Heat Mass Transf. 7, 333–339 (1964)

    Article  Google Scholar 

  45. Gorla, R.S.R., Bakir, A.Y., Byrd, L.: Effects of thermal dispersion and stratification on combined convection on a vertical surface embedded in a porous medium. Trans. Porous Media 25, 275–282 (1996)

    Article  Google Scholar 

  46. El-Hakiem, M.A.: Viscous dissipation effects on MHD free convection flow over a nonisothermal surface in a micropolar fluid. Int. Commun. Heat Mass Transf. 27, 581–590 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dulal Pal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pal, D., Das, B.C. & Vajravelu, K. Influence of Non-linear Thermal Radiation on MHD Double-Diffusive Convection Heat and Mass Transfer of a Non-Newtonian Fluid in a Porous Medium. Int. J. Appl. Comput. Math 3, 3105–3129 (2017). https://doi.org/10.1007/s40819-016-0281-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40819-016-0281-5

Keywords

Navigation