Skip to main content
Log in

Investigation of Heat Transfer in Rectangular Porous Fins \((\mathrm{Si}_3 \mathrm{N}_4 )\) with Temperature-Dependent Internal Heat Generation by Galerkin’s Method (GM) and Akbari-Ganji’s Method (AGM)

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, heat transfer in rectangular porous fins with temperature-dependent internal heat generation, is investigated and Darcy’s model for passage velocity is applied. Heat transfer governing equation is solved by two simple and accurate methods, Galerkin’s Method (GM) and Akbari-Ganji’s Method (AGM). AGM is a simple and innovative approach can be applied for many linear and nonlinear problems and in this case by this method can reach solutions faster in comparison with other methods. Results indicate that GM and AGM are very accurate and effective in comparison with the numerical results. Porous fin is made from \(\mathrm{Si}_3 \mathrm{N}_4\). Effects of Darcy number and Rayleigh number on temperature distribution are investigated. As a main outcome, the heat generation rate is very effective in fin temperatures. When heat generation rate increases, fin temperatures increase since more amount of heat is dissipated to the surrounding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

a :

Constant

A :

Section area of fin

AGM :

Akbari-Ganji’s method

\(C_p \) :

Specific heat at constant pressure

\(D_a \) :

Darcy number

G :

Generation number,dimensionless

GM :

Galerkin’s method

h :

Convection coefficient

k :

Thermal conductivity

\(K_{r }\) :

Thermal conductivity ratio \(\left[ {\frac{k_{eff} }{k_f }} \right] \)

K :

Permeability

L :

Length of fin

M :

Convective parameter

NUM :

Numerical method

q :

Conducted heat

\(q^{*}\) :

Internal heat generation

Ra :

Rayleigh number

\(S_h \) :

Porous parameter

T :

Temperature

\(T_b \) :

Temperature at fin base

\(T_\infty \) :

Sink temperature for convection

t :

Thickness of the fin

\(V_w \) :

Velocity of fluid passing through the fin

w :

Width of the fin

x :

Axial coordinate

X :

Dimensionless axial coordinate [x / L]

\(\beta \) :

Coefficient of volumetric thermal expansion

\(\Delta \) :

Temperature difference

\(\varepsilon _G \) :

Internal heat generation parameter

\(\theta \) :

Dimensionless temperature

\(\vartheta \) :

Kinematic viscosity

\(\rho \) :

Density

\(\varphi \) :

Porosity variable

f :

Fluid properties

\(e_{ff}\) :

Porous properties

s :

Solid properties

References

  1. Kavyani, M.: Principle of Heat Transfer in Porous Media, 2nd edn. Springer, New York (1995)

    Book  Google Scholar 

  2. Alkam, M.K., Al-Nimr, M.A.: Solar collectors with tubes partially filled with porous substrates. J. Sol. Energy Eng. 121(1), 20–24 (1999)

    Article  Google Scholar 

  3. Kiwan, S., Al-Nimr, M.A.: Using porous fins for heat transfer enhancement. ASME J. Heat Transf. 123(4), 790–795 (2000)

    Article  Google Scholar 

  4. Kiwan, S.: Effect of radiative losses on the heat transfer from porous fins. Int. J. Therm. Sci. 46(10), 1046–1055 (2007)

    Article  Google Scholar 

  5. Kiwan, S., Zeitoun, O.: Natural convection in a horizontal cylindrical annulus using porous fins. J. Numer. Methods Heat Fluid Flow 18(5), 618–634 (2008)

    Article  Google Scholar 

  6. Hamdan, M.O., Al-Nimr, M.A.: The use of porous fins for heat transfer augmentation in parallel-plate channels. Transp. Porous Media 84(2), 409–420 (2010)

    Article  Google Scholar 

  7. Alkam, M.K., Al-Nimr, M.A., Hamdan, M.O.: On forced convection in channels partially filled with porous substrates. Heat Mass Transf. 38(4), 337–342 (2002)

    Article  Google Scholar 

  8. Kiwan, S.: Thermal analysis of natural convection porous fins. Transp. Porous Media 67, 17–29 (2007)

    Article  Google Scholar 

  9. Varol, Y., Oztop, H.F., Varol, A.: Effects of thin fin on natural convection in porous triangular enclosures. Int. J. Therm. Sci. 46, 1033–1045 (2007)

    Article  MATH  Google Scholar 

  10. Gorla, R.S.R., Bakier, A.Y.: Thermal analysis of natural convection and radiation in porous fins. Int. Commun. Heat Mass Transf. 38, 638–645 (2011)

    Article  Google Scholar 

  11. Kundo, B., Bhanja, D., Lee, K.S.: A model on the basis of analytics for computing maximum heat transfer in porous fins. Int. J. Heat Mass Transf. 55, 7611–7622 (2012). doi:10.1016/j.ijheatmasstransfer.2012.07.069

  12. Domairry, G., Fazeli, M.: Homotopy analysis method to determine the fin efficiency of convective straight fins with temperature-dependent thermal conductivity. Commun. Nonlinear Sci. Numer. Simul. 14(2), 489–499 (2009)

    Article  Google Scholar 

  13. Hatami, M., Ganji, D.D.: Thermal performance of circular convective-radiative porous fins with different section shapes and materials. Energy Convers. Manag. 76, 185–193 (2013)

    Article  Google Scholar 

  14. Das, R., Ooi, K.T.: Predicting multiple combination of parameters for designing a porous fin subjected to a given temperature requirement. Energy Convers. Manag. 66, 211–219 (2013)

    Article  Google Scholar 

  15. Hatami, M., Ganji, D.D.: Thermal behavior of longitudinal convective-radiative porous fins with different section shapes and ceramic materials (SiC and \(\text{ Si }_3 \text{ N }_4\)). Ceram. Int. 40(5), 6765–6775 (2014)

    Article  Google Scholar 

  16. Hatami, M., Mehdizadeh Ahangar, G.H.R., Ganji, D.D., Boubaker, K.: Refrigeration efficiency analysis for fully wet semi-spherical porous fins. Energy Convers. Manag. 84, 533–540 (2014)

    Article  Google Scholar 

  17. Ghasemi, Seiyed E., Hatami, M., Ganji, D.D.: hermal analysis of convective fin with temperature-dependent thermal conductivity and heat generation. Case Stud. Therm. Eng. 4, 1–8 (2014)

    Article  Google Scholar 

  18. Sheikholeslami, M., Mustafa, M.T., Ganji, D.D.: Nanofluid flow and heat transfer over a stretching porous cylinder considering thermal radiation. Iran. J. Sci. Technol. (Sci.) 39(3.1), 433–440 (2015)

    Google Scholar 

  19. Hosseini, M., Sheikholeslami, Z., Ganji, D.D.: Non-Newtonian fluid flow in an axisymmetric channel with porous wall. Propuls. Power Res. 2(4), 254–262 (2013)

    Article  Google Scholar 

  20. Hatami, M., Hasanpour, A., Ganji, D.D.: Heat transfer study through porous fins (\(\text{ Si }_3 \text{ N }_4\) and AL) with temperature-dependent heat generation. Energy Convers. Manag. 74, 9–16 (2013)

    Article  Google Scholar 

  21. Aziz, A., Bouaziz, M.N.: A least squares method for a longitudinal fin with temperature dependent internal heat generation and thermal conductivity. Energy Convers. Manag. 52, 2876–2882 (2011)

    Article  Google Scholar 

  22. Nield, D.A., Bejan, A.: Convection in Porous Media, 3rd edn. Springer, New York (2006)

    MATH  Google Scholar 

  23. Akbari, M.R., Ganji, D.D., Nimafar, M., Ahmadi, A.R.: Significant progress in solution of nonlinear equations at displacement of structure and heat transfer extended surface by new AGM approach. Front. Mech. Eng. 9(4), 390–401 (2014)

    Article  Google Scholar 

  24. Ahmadi, A., Akbari, M.R., Ganji, D.D.: Nonlinear Dynamic in Engineering by Akbari-Ganji’s Method, 1st edn. Xlibris, Bloomington (2015)

    Google Scholar 

  25. Logan, D.L.: A First Course in the Finite Element Method, 5th edn. Cengage Learning, Boston (2012)

    Google Scholar 

  26. Hahn, D.W., Ozisik, M.N.: Heat Conduction, 3rd edn. Wiley, London (2012)

    Book  Google Scholar 

  27. Flex, P.D.E.: A Flexible Solution System For Partial Differential Equations. PDE Inc, FlexPDE (6.36) help, Introduction. http://www.pdesolutions.com/help/index.html?introduction.html

  28. Kim, S.J., Jang, S.P.: Effects of the Darcy number, the Prandtl number, and the Reynolds number on local thermal non-equilibrium. Int. J. Heat Mass Transf. 45(19), 3885–3896 (2002)

    Article  MATH  Google Scholar 

  29. Torabi Rad, M., Kotas, P., Beckermann, C.: Rayleigh number criterion for formation of A-Segregates in steel castings and ingots. Metall. Mater. Trans. A 44(9), 4266–4281 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. D. Ganji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asadian, H., Zaretabar, M., Ganji, D.D. et al. Investigation of Heat Transfer in Rectangular Porous Fins \((\mathrm{Si}_3 \mathrm{N}_4 )\) with Temperature-Dependent Internal Heat Generation by Galerkin’s Method (GM) and Akbari-Ganji’s Method (AGM). Int. J. Appl. Comput. Math 3, 2987–3000 (2017). https://doi.org/10.1007/s40819-016-0279-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40819-016-0279-z

Keywords

Navigation